login
Minimal absolute value of discriminants of number fields of degree n.
(Formerly M3099)
3

%I M3099 #22 Apr 30 2021 21:35:04

%S 1,3,23,117,1609,9747,184607,1257728

%N Minimal absolute value of discriminants of number fields of degree n.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H LMFDB, <a href="https://www.lmfdb.org/NumberField">Number fields</a>

%H A. M. Odlyzko, <a href="http://www.dtc.umn.edu/~odlyzko/doc/zeta.html">Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: A survey of recent results</a>, Sem. Theorie des Nombres, Bordeaux, 2 (1990), pp. 119-141.

%H <a href="/index/Qua#quadfield">Index entries for sequences related to quadratic fields</a>

%F a(n) = Min_{A343690(n), A343772(n)}. - _Jianing Song_, Apr 26 2021

%e From _Jianing Song_, Apr 26 2021: (Start)

%e The number field F of degree n whose discriminant is of minimal absolute value:

%e n = 2, F = Q[x]/(x^2 - x + 1), d = -3;

%e n = 3, F = Q[x]/(x^3 - x^2 + 1), d = -23;

%e n = 4, F = Q[x]/(x^4 - x^3 - x^2 + x + 1), d = 117;

%e n = 5, F = Q[x]/(x^5 - x^3 - x^2 + x + 1), d = 1609;

%e n = 6, F = Q[x]/(x^6 - x^5 + x^4 - 2x^3 + 4x^2 - 3x + 1), d = -9747;

%e n = 7, F = Q[x]/(x^7 - x^6 - x^5 + x^4 - x^2 + x + 1), d = -184607;

%e n = 8, F = Q[x]/(x^8 - 2x^7 + 4x^5 - 4x^4 + 3x^2 - 2x + 1), d = 1257728. (End)

%Y Cf. A343690 (the positive discriminant case), A343772 (the negative discriminant case).

%K nonn,hard,more

%O 1,2

%A _N. J. A. Sloane_.

%E New name by _Jianing Song_, Apr 26 2021