

A006529


(25*n^4120*n^3+209*n^2108*n)/6.
(Formerly M4717)


2



0, 1, 10, 57, 272, 885, 2226, 4725, 8912, 15417, 24970, 38401, 56640, 80717, 111762, 151005, 199776, 259505, 331722, 418057, 520240, 640101, 779570, 940677, 1125552, 1336425, 1575626, 1845585, 2148832, 2487997, 2865810
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


REFERENCES

M. Gardner, New Mathematical Diversions from Scientific American. Simon and Schuster, NY, 1966, p. 246, gives this as the number of ways to color faces of a cube using at most n colors, but the formula is incorrect (it was corrected in the second printing)  see A047780.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Harvey P. Dale, Table of n, a(n) for n = 0..1000
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.
Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.
Index entries for linear recurrences with constant coefficients, signature (5, 10, 10, 5, 1).


FORMULA

a(0)=0, a(1)=1, a(2)=10, a(3)=57, a(4)=272, a(n)=5*a(n1) 10*a(n2)+ 10*a(n3)5*a(n4)+a(n5) [From Harvey P. Dale, Oct 30 2011]
G.f.: (77*x^417*x^35*x^2x)/(x1)^5 [From Harvey P. Dale, Oct 30 2011]


MAPLE

A006529:=z*(1+5*z+17*z**2+77*z**3)/(z1)**5; [Conjectured by Simon Plouffe in his 1992 dissertation.]


MATHEMATICA

Table[(25n^4120n^3+209n^2108n)/6, {n, 0, 40}] (* or *) LinearRecurrence[ {5, 10, 10, 5, 1}, {0, 1, 10, 57, 272}, 40] (* Harvey P. Dale, Oct 30 2011 *)


CROSSREFS

Sequence in context: A055251 A038733 A004142 * A246754 A024133 A229074
Adjacent sequences: A006526 A006527 A006528 * A006530 A006531 A006532


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Jud McCranie noticed this error and gave the correct version of this sequence (A047780).


STATUS

approved



