login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006525 Denominators of greedy Egyptian fraction for e - 2.
(Formerly M1553)
27
2, 5, 55, 9999, 3620211523, 25838201785967533906, 3408847366605453091140558218322023440765 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..11

H. P. Robinson, Letter to N. J. A. Sloane, Sep 1975

Eric Weisstein's World of Mathematics, Egyptian Fraction

Index entries for sequences related to Egyptian fractions

FORMULA

a(n) = ceiling(1/(e - 2 - Sum_{j=0..n-1} 1/a(j))). - Jon E. Schoenfield, Dec 26 2014

EXAMPLE

e - 2 = 1/2 + 1/5 + 1/55 + 1/9999 + ... . - Jon E. Schoenfield, Dec 26 2014

MATHEMATICA

lst={}; k=N[E-2, 1000]; Do[s=Ceiling[1/k]; AppendTo[lst, s]; k=k-1/s, {n, 12}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 02 2009 *)

PROG

(PARI) x = exp(1) - 2;

f(x, k) = if(k<1, x, f(x, k - 1) - 1/n(x, k));

n(x, k) = ceil(1/f(x, k - 1));

for(k = 1, 7, print1(n(x, k), ", ")) \\ Indranil Ghosh, Mar 27 2017

CROSSREFS

Cf. A006526, A269993.

Sequence in context: A114029 A013171 A073422 * A254406 A260654 A042161

Adjacent sequences:  A006522 A006523 A006524 * A006526 A006527 A006528

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Herman P. Robinson

Offset changed to 1 by Indranil Ghosh, Mar 27 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 16:27 EST 2017. Contains 295003 sequences.