login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006500 Restricted combinations.
(Formerly M1092)
10
1, 2, 4, 8, 12, 18, 27, 45, 75, 125, 200, 320, 512, 832, 1352, 2197, 3549, 5733, 9261, 14994, 24276, 39304, 63580, 102850, 166375, 269225, 435655, 704969, 1140624, 1845504, 2985984, 4831488, 7817616, 12649337, 20466953, 33116057, 53582633 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n)=( A000045(k+2) )^3 if n=3k, a(n)=( A000045(k+2) )^3 * A000045(k+3) if n=3k+1, a(n)= A000045(k+2) * ( A000045(k+3) )^2 if n=3k+2. Number of all subsets of the set {1,2,...,n} which do not contain two elements whose difference is 3. a(n) is number of compositions of n+3 into elements of the set {1,2,4,5,6}, but with condition that 2 succeed only 2 or 4. Number of all permutations of {1,2,...,n+3} satisfying p(i)-i in {-3,0,3}. - Vladimir Baltic, Feb 17 2003
REFERENCES
M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069, Table 1 k=3.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Katharine A. Ahrens, Combinatorial Applications of the k-Fibonacci Numbers: A Cryptographically Motivated Analysis, Ph. D. thesis, North Carolina State University (2020).
G. E. Bergum and V. E. Hoggatt, Jr., A combinatorial problem involving recursive sequences and tridiagonal matrices, Fib. Quart., 16 (1978), 113-118.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
M. Tetiva, Subsets that make no difference d, Mathematics Magazine 84 (2011), no. 4, 300-301
FORMULA
Recurrence: a(n) = a(n-1)+a(n-2)-a(n-3)+a(n-4)+a(n-5)+a(n-6)-a(n-7)-a(n-8) G.f.: -(x^7+2*x^6+x^5-x^4-3*x^3-x^2-x-1)/(x^8+x^7-x^6-x^5-x^4+x^3-x^2-x+1). - Vladimir Baltic, Feb 17 2003
a(n) = F(floor(n/3) + 3)^(n mod 3)*F(floor(n/3) + 2)^(3 - (n mod 3)) where F(n) is the n-th Fibonacci number. - David Nacin, Feb 29 2012
EXAMPLE
For example, a_4=12 and 12 subsets are: emptyset, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {2,3}, {2,4}, {3,4}, {1,2,3}, {2,3,4}. Corresponding compositions of 7=4+3 are: 1+1+1+1+1+1+1+1, 4+1+1+1, 1+4+1+1, 1+1+4+1, 1+1+1+4, 5+1+1, 4+2+1, 1+5+1, 1+4+2, 1+1+5, 6+1 and 1+6.
MAPLE
A006500:=-(2*z**6+z**7-z**4+z**5-3*z**3-z**2-z-1)/(z**6-z**3-1)/(z**2+z-1); # Conjectured by Simon Plouffe in his 1992 dissertation.
MATHEMATICA
Table[Fibonacci[Floor[n/3] + 3]^Mod[n, 3] * Fibonacci[Floor[n/3] + 2]^(3 - Mod[n, 3]), {n, 0, 40}] (* David Nacin, Feb 29 2012 *)
Table[Product[Fibonacci[Floor[(n + i)/3] + 2], {i, 0, 2}], {n, 0, 30}] (* David Nacin, Mar 07 2012 *)
LinearRecurrence[{1, 1, -1, 1, 1, 1, -1, -1}, {1, 2, 4, 8, 12, 18, 27, 45}, 40] (* David Nacin, Mar 07 2012 *)
PROG
(Python)
def a(n, adict={0:1, 1:2, 2:4, 3:8, 4:12, 5:18, 6:27, 7:45}):
if n in adict:
return adict[n]
adict[n]=a(n-1)+a(n-2)-a(n-3)+a(n-4)+a(n-5)+a(n-6)-a(n-7)-a(n-8)
return adict[n] # David Nacin, Mar 07 2012
CROSSREFS
Sequence in context: A224810 A074633 A294049 * A134181 A171645 A125606
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 12:14 EDT 2024. Contains 371792 sequences. (Running on oeis4.)