This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006492 Generalized Lucas numbers. (Formerly M3751) 2

%I M3751

%S 1,0,5,6,21,40,93,190,396,796,1586,3108,6025,11552,21947,41346,77311,

%T 143580,265013,486398,888122,1613944,2920100,5261880,9445905,16897328,

%U 30127665

%N Generalized Lucas numbers.

%D L. Carlitz and R. Scoville, Zero-one sequences and Fibonacci numbers, Fib. Quart., 15 (1977), 246-254.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H _Simon Plouffe_, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de S\'{e}ries G\'{e}n\'{e}ratrices et Quelques Conjectures</a>, Dissertation, Universit\'{e} du Qu\'{e}bec \`{a} Montr\'{e}al, 1992.

%H _Simon Plouffe_, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Universit\'{e} du Qu\'{e}bec \`{a} Montr\'{e}al, 1992.

%F G.f.: [(1-x)^2(1-2x+x^2)]/[(1-x-x^2)^4]. - Ralf Stephan, Apr 23 2004

%p A006492:=(1-2*z+2*z**2)*(z-1)**2/(z**2+z-1)**4; [_Simon Plouffe_ in his 1992 dissertation.]

%K nonn

%O 3,3

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .