login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006469 Number of rooted genus-1 maps with 2 faces, n vertices and no isthmuses.
(Formerly M4727)
1
10, 79, 340, 1071, 2772, 6258, 12768, 24090, 42702, 71929, 116116, 180817, 273000, 401268, 576096, 810084, 1118226, 1518195, 2030644, 2679523, 3492412, 4500870, 5740800, 7252830, 9082710, 11281725, 13907124, 17022565, 20698576, 25013032, 30051648, 35908488 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Colin Barker, Table of n, a(n) for n = 1..1000

T. R. S. Walsh, A. B. Lehman, Counting rooted maps by genus. III: Nonseparable maps, J. Combinatorial Theory Ser. B 18 (1975), 222-259.

Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).

FORMULA

G.f.: x/(x-1)^7*(3*x^2-9*x-10), in Simon Plouffe Master thesis, Uqam 1992.

From Colin Barker, Apr 22 2017: (Start)

a(n) = (n*(474 + 1247*n + 1215*n^2 + 545*n^3 + 111*n^4 + 8*n^5)) / 360.

a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.

(End)

PROG

(PARI) Vec(x*(10 + 9*x - 3*x^2) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Apr 22 2017

CROSSREFS

Sequence in context: A222701 A283658 A160655 * A288630 A081905 A016138

Adjacent sequences:  A006466 A006467 A006468 * A006470 A006471 A006472

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Name improved by Sean A. Irvine, Apr 21 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 19 05:08 EDT 2018. Contains 316336 sequences. (Running on oeis4.)