login
Number of nonseparable tree-rooted planar maps with n + 4 edges and 5 vertices.
(Formerly M4031)
4

%I M4031 #20 Apr 05 2021 21:37:20

%S 5,210,3150,27556,170793,829920,3359356,11786190,36845718,104719524,

%T 274707420,672982128,1554007910,3407724936,7139933088,14366348780,

%U 27878652291,52364814150,95497666810,169546939380,293722986375,497527759560,825473130300,1343631834090

%N Number of nonseparable tree-rooted planar maps with n + 4 edges and 5 vertices.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Andrew Howroyd, <a href="/A006413/b006413.txt">Table of n, a(n) for n = 1..1000</a>

%H T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(75)90050-7">Counting rooted maps by genus. III: Nonseparable maps</a>, J. Combinatorial Theory Ser. B 18 (1975), 222-259.

%F a(n) = 5 * binomial(n + 6, 7) + 170 * binomial(n + 6, 8) + 1440 * binomial(n + 6, 9) + 4906 * binomial(n + 6, 10) + 7927 * binomial(n + 6, 11) + 6090 * binomial(n + 6, 12) + 1794 * binomial(n + 6, 13). - _Sean A. Irvine_, Apr 03 2017

%F a(n) = binomial(n+7,8)*(n + 4)*(23*n^4 + 279*n^3 + 941*n^2 + 599*n + 138)/1980. - _Andrew Howroyd_, Apr 05 2021

%o (PARI) a(n) = {binomial(n+7, 8)*(n + 4)*(23*n^4 + 279*n^3 + 941*n^2 + 599*n + 138)/1980} \\ _Andrew Howroyd_, Apr 05 2021

%Y Column 5 of A342984.

%Y Cf. A006411, A006412.

%K nonn

%O 1,1

%A _N. J. A. Sloane_

%E Terms a(10) and beyond from _Andrew Howroyd_, Apr 05 2021