login
Number of connected planar maps with n edges.
(Formerly M1279)
10

%I M1279 #32 Dec 19 2021 00:07:56

%S 1,2,4,14,52,248,1416,9172,66366,518868,4301350,37230364,333058463,

%T 3057319072,28656583950,273298352168,2645186193457,25931472185976

%N Number of connected planar maps with n edges.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D T. R. S. Walsh, personal communication.

%H Richard Kapolnai, Gabor Domokos, and Timea Szabo, <a href="http://arxiv.org/abs/1206.1698">Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes</a>, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698, 2012. See Table 2.

%H V. A. Liskovets, <a href="http://dx.doi.org/10.1016/0012-365X(94)00347-L">A reductive technique for enumerating nonisomorphic planar maps</a>, Discr. Math., v.156 (1996), 197-217.

%H Walsh, T. R. S., <a href="https://doi.org/10.1137/0604018">Generating nonisomorphic maps without storing them</a>, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.

%H Timothy R. Walsh, <a href="http://www.info2.uqam.ca/~walsh_t/papers/GENERATING NONISOMORPHIC.pdf">Space-efficient generation of nonisomorphic maps and hypermaps</a>

%H T. R. Walsh, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Walsh/walsh3.html">Space-Efficient Generation of Nonisomorphic Maps and Hypermaps</a>, J. Int. Seq. 18 (2015) # 15.4.3

%H Wormald, Nicholas C. <a href="http://dx.doi.org/10.1016/0012-365X(81)90238-7">Counting unrooted planar maps</a>, Discrete Math. 36 (1981), no. 2, 205-225.

%Y Cf. A090376.

%Y Cf. A006387, A214814, A214815, A214816.

%K nonn,nice

%O 0,2

%A _N. J. A. Sloane_