The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006385 Number of connected planar maps with n edges.
(Formerly M1279)
1, 2, 4, 14, 52, 248, 1416, 9172, 66366, 518868, 4301350, 37230364, 333058463, 3057319072, 28656583950, 273298352168, 2645186193457, 25931472185976 (list; graph; refs; listen; history; text; internal format)



N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

T. R. S. Walsh, personal communication.


Table of n, a(n) for n=0..17.

Richard Kapolnai, Gabor Domokos, and Timea Szabo, Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes, Periodica Polytechnica Electrical Engineering, 56(1):11-10, 2012. Also arXiv:1206.1698, 2012. See Table 2.

V. A. Liskovets, A reductive technique for enumerating nonisomorphic planar maps, Discr. Math., v.156 (1996), 197-217.

Walsh, T. R. S., Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.

Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps

T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3

Wormald, Nicholas C. Counting unrooted planar maps, Discrete Math. 36 (1981), no. 2, 205-225.


Cf. A090376.

Cf. A006387, A214814, A214815, A214816.

Sequence in context: A295760 A129876 A038055 * A322859 A183949 A131180

Adjacent sequences:  A006382 A006383 A006384 * A006386 A006387 A006388




N. J. A. Sloane.



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 29 18:27 EDT 2020. Contains 337432 sequences. (Running on oeis4.)