login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006369 a(n) = 2n/3 for n divisible by 3, otherwise a(n) = round(4n/3). Or, equivalently, a(3*n-2) = 4*n-3, a(3*n-1) = 4*n-1, a(3*n) = 2*n.
(Formerly M2245)
27
0, 1, 3, 2, 5, 7, 4, 9, 11, 6, 13, 15, 8, 17, 19, 10, 21, 23, 12, 25, 27, 14, 29, 31, 16, 33, 35, 18, 37, 39, 20, 41, 43, 22, 45, 47, 24, 49, 51, 26, 53, 55, 28, 57, 59, 30, 61, 63, 32, 65, 67, 34, 69, 71, 36, 73, 75, 38, 77, 79, 40, 81, 83, 42, 85, 87, 44, 89, 91, 46, 93, 95 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Original name was: Nearest integer to 4n/3 unless that is an integer, when 2n/3.

This function was studied by Lothar Collatz in 1932.

Fibonacci numbers lodumo_2. - Philippe Deléham, Apr 26 2009

a(n) = A006368(n) + A168223(n); A168222(n) = a(a(n)); A168221(a(n)) = A006368(n). - Reinhard Zumkeller, Nov 20 2009

REFERENCES

R. K. Guy, Unsolved Problems in Number Theory, E17.

M. Klamkin, Proposer, An infinite permutation, Problem 63-13, SIAM Review, Vol. 8:2 (1966), 234-236.

M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 579-581.

K. Knopp, Infinite Sequences and Series, Dover Publications, NY, 1958, p. 77.

J. C. Lagarias, ed., The Ultimate Challenge: The 3x+1 Problem, Amer. Math. Soc., 2010; see page 31 (g(n)) and page 270 (f(n)).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

R. Zumkeller, Table of n, a(n) for n = 0..10000

J. H. Conway, On unsettleable arithmetical problems, Amer. Math. Monthly, 120 (2013), 192-198.

J. C. Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly, 92 (1985), 3-23.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

S. Schreiber & N. J. A. Sloane, Correspondence, 1980

Index entries for sequences that are permutations of the natural numbers

Index entries for two-way infinite sequences

Index entries for sequences related to 3x+1 (or Collatz) problem

FORMULA

From Michael Somos, Oct 05 2003: (Start)

G.f.: x * (1 + 3*x + 2*x^2 + 3*x^3 + x^4) / (1 - x^3)^2.

a(3*n) = 2*n, a(3*n + 1) = 4*n + 1, a(3*n - 1) = 4*n - 1, a(n) = -a(-n) for all n in Z. (End)

The map is: n -> if n mod 3 = 0 then 2*n/3 elif n mod 3 = 1 then (4*n-1)/3 else (4*n+1)/3.

a(n) = (2 - ((2*n + 1) mod 3) mod 2) * floor((2*n + 1)/3) + (2*n + 1) mod 3 - 1. - Reinhard Zumkeller, Jan 23 2005

a(n) = lod_2(F(n)). - Philippe Deléham, Apr 26 2009

0 = 21 + a(n)*(18 +4*a(n) - a(n+1) - 7*a(n+2)) + a(n+1)*(-a(n+2)) + a(n+2)*(-18 + 4*a(n+2)) for all n in Z. - Michael Somos, Aug 24 2014

a(n) = n + floor((n+1)/3)*(-1)^((n+1) mod 3). [Bruno Berselli, Dec 10 2015]

EXAMPLE

G.f. = x + 3*x^2 + 2*x^3 + 5*x^4 + 7*x^5 + 4*x^6 + 9*x^7 + 11*x^8 + 6*x^9 + ...

MAPLE

A006369 := proc(n) if n mod 3 = 0 then 2*n/3 else round(4*n/3); fi; end;

f:=proc(N) if N mod 3 = 0 then 2*(N/3); elif N mod 3 = 2 then 4*((N+1)/3)-1; else 4*((N+2)/3)-3; fi; end; # N. J. A. Sloane, Feb 04 2011

A006369:=(1+z**2)*(z**2+3*z+1)/(z-1)**2/(z**2+z+1)**2; # Simon Plouffe, in his 1992 dissertation

MATHEMATICA

Table[If[Divisible[n, 3], (2n)/3, Floor[(4n)/3+1/2]], {n, 0, 80}] (* Harvey P. Dale, Nov 03 2011 *)

Table[n + Floor[(n + 1)/3] (-1)^Mod[n + 1, 3], {n, 0, 80}] (* Bruno Berselli, Dec 10 2015 *)

PROG

(PARI) {a(n) = if( n%3, round(4*n / 3), 2*n / 3)}; /* Michael Somos, Oct 05 2003 */

(Haskell)

a006369 n | m > 0     = round (4 * fromIntegral n / 3)

          | otherwise = 2 * n' where (n', m) = divMod n 3

-- Reinhard Zumkeller, Dec 31 2011

CROSSREFS

Inverse mapping to A006368. Cf. A028397, A069196.

Trajectories under A006368 and A006369: A180853, A217218, A185590, A180864, A028393, A028394, A094328, A094329, A028396, A028395, A217729, A182205, A223083-A223088, A185589.

Sequence in context: A209584 A209140 A265903 * A097284 A276684 A105353

Adjacent sequences:  A006366 A006367 A006368 * A006370 A006371 A006372

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane and J. H. Conway

EXTENSIONS

New name from Jon E. Schoenfield, Jul 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 15:13 EST 2020. Contains 338804 sequences. (Running on oeis4.)