login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006359 Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.
(Formerly M4148)
18

%I M4148

%S 1,6,21,91,371,1547,6405,26585,110254,457379,1897214,7869927,32645269,

%T 135416457,561722840,2330091144,9665485440,40093544735,166312629795,

%U 689883899612,2861717685450,11870733787751,49241167758705,204258021937291,847285745315256

%N Number of distributive lattices; also number of paths with n turns when light is reflected from 6 glass plates.

%C Let M denotes the 6 X 6 matrix = row by row (1,1,1,1,1,1)(1,1,1,1,1,0)(1,1,1,1,0,0)(1,1,1,0,0,0)(1,1,0,0,0,0)(1,0,0,0,0,0) and A(n) the vector (x(n),y(n),z(n),t(n),u(n),v(n)) = M^n*A where A is the vector (1,1,1,1,1,1) then a(n) = x(n). - _Benoit Cloitre_, Apr 02 2002

%D J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124.

%D Manfred Goebel, Rewriting Techniques and Degree Bounds for Higher Order Symmetric Polynomials, Applicable Algebra in Engineering, Communication and Computing (AAECC), Volume 9, Issue 6 (1999), 559-573.

%D J. Haubrich, Multinacci Rijen [Multinacci sequences], Euclides (Netherlands), Vol. 74, Issue 4, 1998, pp. 131-133.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A006359/b006359.txt">Table of n, a(n) for n = 0..200</a>

%H J. Berman and P. Koehler, <a href="/A006356/a006356.pdf">Cardinalities of finite distributive lattices</a>, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]

%H Emma L. L. Gao, Sergey Kitaev, Philip B. Zhang, <a href="https://personal.cis.strath.ac.uk/sergey.kitaev/index_files/Papers/pat-av-alt-words.pdf">Pattern-avoiding alternating words</a>, preprint, 2015.

%H G. Kreweras, <a href="http://www.numdam.org/item?id=MSH_1976__53__5_0">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30.

%H G. Kreweras, <a href="/A019538/a019538.pdf">Les préordres totaux compatibles avec un ordre partiel</a>, Math. Sci. Humaines No. 53 (1976), 5-30. (Annotated scanned copy)

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (3,6,-4,-5,1,1).

%F G.f.: -(z^4 + z^3 - 3z^2 - 2z + 1) / (-1 + 3z + 6z^2 - 4z^3 - 5z^4 + z^5 + z^6). - M. Goebel (manfredg(AT)ICSI.Berkeley.EDU) Jul 26 1997

%F a(n) = 3*a(n-1) + 6*a(n-2) - 4*a(n-3) - 5*a(n-4) + a(n-5) + a(n-6).

%F a(n) is asymptotic to z(6)*w(6)^n where w(6) = (1/2)/cos(6*Pi/13) and z(6) is the root 1 < x < 2 of P(6, X) = -1 - 91*X + 2366*X^2 + 26364*X^3 - 142805*X^4 - 371293*X^5 + 371293*X^6 - _Benoit Cloitre_, Oct 16 2002

%F G.f.: A(x) = (1 + 3*x - 3*x^2 - 4*x^3 + x^4 + x^5)/(1 - 3*x - 6*x^2 + 4*x^3 + 5*x^4 - x^5 - x^6). - _Paul D. Hanna_, Feb 06 2006

%F G.f.: 1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1/(-x-1)))))). - _Paul Barry_, Mar 24 2010

%p A=seq(a.j,j=0..5):grammar1:=[Q5,{ seq(Q.i=Union(Epsilon,seq(Prod(a.j,Q.j),j=5-i..5)),i=0..5), seq(a.j=Z,j=0..5) }, unlabeled]: seq(count(grammar1,size=j),j=0..22); # _Zerinvary Lajos_, Mar 09 2007

%t LinearRecurrence[{3,6,-4,-5,1,1},{1,6,21,91,371,1547},30] (* _Harvey P. Dale_, Sep 03 2016 *)

%o (PARI) k=5; M(k)=matrix(k,k,i,j,if(1-sign(i+j-k),0,1)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)

%o (PARI) {a(n)=local(p=6);polcoeff(sum(k=0,p-1,(-1)^((k+1)\2)*binomial((p+k-1)\2,k)* (-x)^k)/sum(k=0,p,(-1)^((k+1)\2)*binomial((p+k)\2,k)*x^k+x*O(x^n)),n)} // _Paul D. Hanna_, Feb 06 2006

%Y Cf. A000217, A000330, A050446, A050447, A006356, A006357, A006358.

%Y See also A025030, A030112-A030116.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E Alternative description from Jacques Haubrich (jhaubrich(AT)freeler.nl)

%E More terms from _James A. Sellers_, Dec 24 1999

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 14:38 EST 2019. Contains 329865 sequences. (Running on oeis4.)