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Cardinalities of finite distributive lattices

by
*)

Joel Berman and Peter Kbhler

Dedicated to Professor Hermann Boerner to the

th

occasion of his 7o birthday

Despite the wealth of information available on the class of
distributive lattices, general results on the cardinalities of
the finite members of this class are rather scarce. This paper
presents an algorithm which computes from a finite partially
ordered set X the cardinality of the distributive lattice S(X),
whose partially ordered set of join irreducibles is isomorphic

to X.

The algorithm is described in Section 2. This section also
Q.-,includes a discussion on how the algorithm can readily be used
for rapid paper and pencil calculations. A computer implementation

is also presented.

Section 3 contains some general results on the cardinality
of the lattice S(X), when the poset X is given. These results are
obtained with the help of the notion of the incidence ring of a

partially ordered set.

*) The research of the first author was supported, in part, by
the National Research Council of Canada
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Finally Section 4 consists of numerical results obtained
using the algorithm and the techniques from Section 3. Included
are some results on the cardinalities of free algebraic structures
having distributive lattice reducts. In particular the cardinality

of the free distributive lattice on seven generators is determined.

Section 1. Background

In what follows L always denotes a finite distributive lattice
and X is a finite partially ordered set (poset). An element a € L

is join irreducible if a # O and if a =b + ¢ then a = b or a = ¢

—

The set of all join irreducibles in L forms a poset J(L). Tif_ L:)
A subset Y of X is a gemi-ideal if x< y and y € ¥ imply x € Y.
The collection of all semi-ideals of X, ordered by set theoretic
inclusion, forms a distributive lattice S(X). A very useful result
of lattice theory states that J(S(X)) « X and S(J(L)) ~ L. In

particular, a € L. corresponds to the semi-ideal {x|x €J(L),x< a}

-

of the poset J(L). £ }

An anti-chain is a totally unordered set. A semi-ideal Y c X
is uniquely determined by the anti-chain of its maximal elements.
Similarly any anti-chain A c X determines a semi-ideal of X in a
natural way, i.e. {x|x € X,3a€A x <a} . Thus, the cardinality of

S(X) is equal to the mumber of anti-chains in X.

For elements x,y € X [x,y] is the (possibly empty) interval

{fala€L, x<ac<y}, and (x] is the semi-ideal {ala €L, a <x}.

A chain is a totally ordered set, in particular
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n = {0,...,n-1} endowed with the natural order is the n-element
chain. If Y and Z are posets, then Hom(Y,Z) denotes the set of all
order homomorphisms from Y to Z. If, moreover, Y and Z are bounded
then Homo'l(Y,Z) is the set of all order homomorphisms which

respect the bounds. The dual of X will be denoted by X.

Details on this an other matters of distributive lattices

can be found in [11, [5], [11].

A few finite posets Y have lattices S(Y) which are easily
described. Thus S(@) is the one-element lattice and more
generally S(n) ~ n+l. At the other extreme the lattice of semi-
ideals of the n~element anti-chain is simply the Boolean lattice

zn_ Other examples are given by the following.

Proposition 1.1

Let ¥,Z be finite posets, and n a natural number. Then:
(1) s « s(¥)
(2) S(Y + 2) ~ S(Y) xS8(2)
(3)  S(Y x 2) ~ Hom(¥,S(2))
(49) s(2M « FD,,1(n), the free bounded distributive lattice on

n generators .

Proof:

(1),(2) and (3) are well known, see e.g. [5], p.57, while
(4) is a consequence of the more general observation that S(Y x Z)
is isomorphic to the free product of S(Y) and S(Z) in the category

of bounded distributive lattices, see [1l1], p.129.
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Combining (3) and (4) we get the next results which have
served as a basis for several approaches to compute the cardinality
of FDO 1(n)-, see e.g. [9],[1l0] and also Section 4 of this paper.

1
Corollary 1.2

(1) FDo,l(n+1) ~ {<a,b>|a,b EFDo,l(n)' a<b}

(2) FD (n+2) ~ {<a,b,c,d>|a,b,c,d €FD (n),a<b<d, a<c<d}.
o,l o,l =7 = -7 =

In spite of Proposition 1.1 (4) and Corollary 1.2 the
problem of finding a general formula for the cardinality of
FDo,l(n) is probably the oldest unsolved problem in lattice theory.
The lack of success on this particular problem emphasizes the

general difficulties of these enumeration problems.

Section 2. An algorithm

The algorithm for finding |S(X)| from the poset X is simply
an iteration of Theorem 2.1 below. We need two bits of notation. X

If Y c X then X~Y is the poset obtained by deleting from X all

elements of ¥; and for x € X, cone(x) = {yly€X, Yy<Xx or y>x}.

Theorem 2.1

For any x € X:

IS(X)| = I1S(X~{x})] + |IS(X~cone(x))]|.

Proof:
As already noted |S(X)| is the number of anti-chains of X.
If an anti-chain A of X contains x then A cannot contain any other

element in cone(x). Hence, the number of anti~-chains in X which
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;tontain X is |S(X ~cone(x))|. Moreover, the set of anti-chains

which do not contain x has cardinality [S(X~{x})].

As an example of the use of Theorem 2.1, let wn be the poset
having n elements as drawn in Figure 1.

n n—}

A S AN

n-1

n even n odd

Figure 1

So Wo = ¢ and W1 is the one element poset. Letting X = n in

Theorem 2.1, it follows that IS(wn)l = IS(wn_l)I + IS(wn_z)I.
Since |S(wo)| =1 and |S(wl)[ = 2, we obtaln the following:
Example 2.2

th

The cardinality of S(W__,) is the n™" Fibonacci number.

y

-

More importantly, Theorem 2.1 may be used to find |S(X) |
for any finite poset X. Let X = {xl,...,xn} be any enumeration of
X. Form a binary tree T(X) with nodes labeled by subposets and
edges labeled by members of X in the following way: The root node
of T(X) is labeled by X. Coming out of the root are edges labeled
Xy going to the nodes labeled X'\{xl} and X~\cone(xl). In general,
if a node is labeled by the poset Y and if i = min{jlxj €Y} then
the branches emanating from Y are labeled Xy and go to nodes

Y~ {x and Y-\cone(xi). If Y = @ then this is a terminal node.

i3
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It follows from Theorem 2.1 that |S(X)| is equal to the number J!

terminal nodes in T (X).

As an example, Figure 2 is a poset X corresponding to J(L)

for the free distributive lattice on 3 generators.
2 4
5 6

Figure 2

1

3

Figure 3 is T(X). The tree T(X) is drawn with the node Y\.{xi}

on the lower left of node Y.

LN .,
PN e 9
o N\ o\
A AR
2 AT

P IUANRITAY

Figure 3
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4
\!5} example, the node labeled U is the subposet {4} and the node
labeled V is the subposet {4,5,6}. Each terminal node N corresponds
to the anti-chain in X whose elements consist of those Xy for
which the branch Y\.cone(xi) was taken in reaching N.

In practice, for paper and pencil calculations, the entire
tree T(X) need not be drawn since Proposition 1.1 (1),(2) and the
remarks preceding Proposition 1.1 may be used to determine the
contribution of entire branches of T(X). Also, the elements of X

may be initially labeled in a judicious fashion.

Also, for some families of posets, Theorem 2.1 can be
applied to determine recursion formulas for the cardinalities of
the corresponding lattices of semi-ideals. Example 2.2 is one such,

another is given by:

Example 2.3

Let n,m be natural numbers, and let » Where

Wn is the poset of Example 2.2 . Then

¢ 1S, o)1 = IS, )1 = 1

and for m,n > 1 the recursion

IS(W_ )| = [S(W_ )|+ I 1sw, __)leIs(W, )|
n,m n,m-1 i+j=n-1 i,m-1 j,m
i even

holds.
Proof:

Since wn,o = wo,m = @ 1it is clear that the first statement
holds. So let m,n > 1. Set Xo = wn o’ and for i=1,...,n define

’

X; recursively by X; = Xi_1-(xi}, where the elements x; are as

indicated in Figure 4.
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We claim that for even i < n-2 the following holds:

(1) IS(X) 1 = IS(X; )| + |S(W )18 (W,

n-i-1l,m i, m-l)I °
To prove this claim observe that a two-fold application of

Theorem 2.1 yields
(2) IS(X;) 1 = I8(X; 0) 1 + IS(X; ~cone(x, NI+ IS(X; , ~cone(x, )l

Now Xi~\cone(xi+l) o wi,m_1 + Yi , where again by Theorem 2.1

X X

N ix\lﬂslﬂ 3
\i/ NN v

i
° o
RN 21
}

s
-,

Figure 5
|S(Yi)| = |S(Wn_i_1’m)| - IS(Wn_i_3'm)I. Thus by Proposition 1.1
(1), (2) we get
(3)  IS(X;~cone(x; 1)) 1 = ISMW; o ) 1-(ISM _; 3 O = ISMW _; 5 1)
Moreover, xi+1-\cone(xi+2) I~ wi,m-l + wn-i—3,m , hence again by

Proposition 1.1 (1),(2)



. Figure 6

(4) IS(X, 4 ~Ncone(x;, o)) 1 = 's(wi,m—l)l - IS(w .

i n-i-3,m

Thus (2), (3) and (4) together imply the claim.

A similar argument applies to verify (1) in the case i = n-2 and
n even. Moreover, if n is uneven one easily sees that

15 (X IS(Xn)I + Is(w

In any case [S(X]) | IS (W

o

n-1' n—2,m—l)|' n:m‘l)l'

Together with (1) this completes the proof.

The numerical values for IS(Wn m)I will be listed in
’

Section 4.

) In general,however, such a tractable decomposition of a
“.-oset will not be obtainable, and a crude paper and pencil
calculation of T(X) may become unwieldy. So we have written a

computer program which counts the number of terminal nodes of T(X).

It is a backtrack program which when given an anti-chain
A={x;, ,...,%, } € X,finds another x, € X for which A U {x,} is
i ik - i i
also an anti-chain and then continues with A U {xi) until no more
elements can be adjoined. The program then "backtracks" and

removes the previously adjoined element and finds another, if

possible. Consult [15] and the references therein for a general
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discussion of backtracking. J

The details are as follows. Let X {xl,...,xn} be an

enumeration of X in such a way that X £ xj implies i > j.

Form the nxn-incidence matrix B of X, i.e.

1 if Xy j
B(i,j) = { .
0o 1if xi £ xj

Thus B is lower triangular. For i fixed let C(i) be the number

A
&

of anti-chains containing Xy and not containing any xj for j > i.
We obtain C(i) as follows. Let jl be the first index < i such
that B(i,jl) = 0. If no such index exists then C(i) = 1 (i.e.
only the anti-chain {xi} is counted). Form
A(l,k) = max{B(i,k),B(jl,k)} for 1 <k < n. Thus A(l,k) = O for
k < jl if and only if {xi,le,xk} is an anti-chain in X. Again
let j2 be the first index < jl such that A(l,jz) = 0 and form
A(2,k) = max{A(l,k),B(jz,k)} for 1 < k < n. This procedure is
repeated until A{(m,k) = 1 for all k < jm. This yields a maximal
anti-chain {xi,le,...,x.m}. Adding 1 to the current value of C(i),\
which is O at the beginning, we backtrack by investigating the \-‘)
remaining values of A(m-l,jm+1),...,A(m-l,n) and repeat the above
process. Thus we exhibit all anti-chains of the given kind. This
includes {xi} which is obtained in the last step.

Clearly, IS(X)I =1 + .§ C(i), where 1 is the contribution

i=1
of the empty set.

Moreover, storing the row vector A(m,k)ﬁ=l whenever an
anti-chain is counted and adding the zero row we represent S(X)
as a sublattice of gn + which can be used for further computations

on S(X).
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Section 3. General results

The notion of the incidence algebra has been extensively

studied in [19]. We use it as a framework for our investigations.

Let A(X) be the ring defined by

A(X) = {alu:x2

— Z, a(x,y) =0 if x ky}
with pointwise addition and the multiplication given by

a(x,y) = [ oa(x,2)B(z,y) .
z€X

This ring is easily seen to be isomorphic with a subring of the
ring of upper triangular |X| by |X| matrices over Z . Let
nm € A(X) be the incidence function, i.e.
1 if x <y
m(x,y) = {
O ifxty .
m is invertible and its inverse is the so-called M8bius function

of the poset X.

The following lemma - already stated in [19] - shows how

$ >mbinatorial properties of X are related to arithmetical

properties of w.

Lemma 3.1
If x,y € X, x <y then for any natural number n > 1 :

n?(x,y) = I|Hom(n-1,[x,y])| = IHomo’l(gil,[x,y])l .

This lemma has an immediate corollary, which however could

have been proven directly.
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Corollary 3.2
For any natural number n > 1 :

IS(Xxn)| = § IS(Ixn-1)| .
I€S (X)

Proof:

Consider A(S(X)), then by Lemma 3.1 and Proposition 1.1 (3)

we have
s(xxn)| =n"(g,x) = § o oa™@,Dn (1,X) =
I€S (X)
= } JHom(n-1,S(I))Id1 = ] IS(Ixn-1)] .
IeS (X) IES (X)

We are going to apply Corollary 3.2 in the special case
where X is a product of two finite chains, in order to obtain
a closed formula for |S(kxmxn)|. This result has already been

stated in [20] .

Theorem 3.3

For natural numbers k,m,n :

k-1 (n+m+j) . .
ISkxmxm 1 = [T —5— . 4
jeo )

Proof:
By Proposition 1.1 (3) [S(k xm) |~ Hom(k,m+l), hence any

semi-ideal I of k xm corresponds uniquely to a k-tuple <apreeegap>

k

with m > a; > ... > a, > o . For abbreviation let B nm Pe the set

= "k k,
of all these k-tuples endowed with the inherited partial order.
Moreover, for any k-tuple <@yyeee,ap> € Bk,m let Ial""ak be
the corresponding ideal. We define a function
f:Bk’mx]N—vIN by f(al,...,ak,n) = IS(Ia xn)l .

1713y
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Then f(al,...,ak,O) =1

Corollary 3.2
a

for all (al,...,ak) € B

k,m

and by

f satisfies the following recursion (for n > 1)

k k-1 a1
(1) f(alr-..lakln) = 12_ N Z s ..'z_i f(il,-..,ik,n—l) .
k70 tk-17 17h
We claim: Lal+n) al+n] (al+n]
n ( n-1 n-k+1
(a2+n) La2+n) (a2+n)
(2) f(al,...,ak,n) = n+l n n-k+2
ak+n ‘ (ak+n ) (ak+n)
n+k-1 n+k-2 n

The proof is a straightforward induction using the recursion (1),
the alternating multilinearity of the determinant and the following

identity for binomial coefficients:

j2 [b+j) (b+j2+1) b+jl)
L, = +1 - (c+l ‘
=3, € ©
Since kxm = I we infer that S(kxmxn) = f(m,m,..,m,n).

Myesa,m

theorem is now proven by induction on k.

L

n+m+j
m+n o ( m )
Obviously f(m,n) = ( n ) = “ﬁ?j“ , which settles the case
j=o0 ( n )
k = 1. Now suppose k > 1 and the theorem is proven for k-1.
.- +
By (2) f(m,m,...,m,n) = det D, where D(i,j) = (nTi?j)
We form a new matrix D' with
D(i,Jj) if 3 =1
D'(i,3) = { .
Coay i s_1yD(1,3) . .
D(i,3J) D(i,J l)D(l,j—l) if 3 %1

Clearly det D = det D', and a straightforward verification yields
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D(1,3) if 3 =1
D' (i,3) = { m+n+l i-1 :
n+l+i-3) moier M3 FH
Thus
n+m
( n ) 0] o] -
(n+m) 1 _(n+l+m) 1 “(n+1+m)
n+l m+l n+l m+2 n e
D' =
(n+m) 2 (n+1+m) 2 .(n+l+m)
n+2’ m+l’ " n+2 m+2 n+l cet
This shows:
+
f(m,m,...,m,n) = (nnm)—ﬁi%:f f(mLTLZ;;LL?'n+l)’
k-times k-1 ) k~1l-times
and by the induction hypothesis
(n;m) k-2 (n+1;m+3) K- (n+$+3)
fmm,...,myn) = —5—— | | —(F=— =1 | ——
k- . + . +
(mk-ll) j=o (mmj) j=o (mm])

which was to be proven.

We have not been successful in finding a closed formula
Y

for |S{jxkxmxn)|. For |S(2x2x2xn)| a step by step applicatiéJ
of Corollary 3.2 yielded:

_ n+8, _ n+7 n+6, _ n+5 n+4
IS(2x2x2xn)| = 48( g") 96(7)+63(6) 15(5)+(4

).
This may serve as an indication of the difficulties which arise

when trying to generalize Theorem 3.3 to the product of four chains.

Nevertheless, Lemma 3.1 together with Proposition 1.1 (3)
may be used to give some numerical results. These will be
presented in Section 4. The following observations are also more

or less devoted to numerical applications.
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If Y is a finite bounded poset let a, € A(X) be defined by

Y
lHom_ ,(Y,[a,b])| 1if a <b
ay(a,b) = { ! .

0 ifatb
Note that an = “n—l , in particular 02 = w . As an immediate
consequence we have:
Lemma 3.4

IS(X xY)| = ) ay (1,3) .
I,J€S(X)

Proof:

Follows directly from Proposition 1.1 (3) .

If Y and 2 are finite bounded posets, then Y + Z denotes
their order sum with 1Y and Oz identified. Moreover, let Y x 2
be their coproduct in the category of bounded posets, i.e. Y x 2

is the cardinal sum of Y and Z with Oy,Oz resp. ly'lz identified.

Proposition 3.5

In the ring A(X), Gy 4z =

L'Proof:

Since Y;:Z ~ Z + Y we have that for each pair a,b € X
with a < b:
Hom (Yfz,[a,b]) = U (Hom (El[alc]) x Hom (il[c'b]))'
o,1 0,1 0,1
a<c<b
This union is clearly disjoint, hence

(a,b) = ] a,la,c).ay(c,b) = a,-ayla,b) .
a<c<b

Oy + 2

This Proposition admits a Corollary which generalizes

Corollary 3.2 .
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Corollary 3.6

Is(xx(2tz))l = ] I1S(I x2) 1 .
I€S (X)

Proof:
By Lemma 3.4 and Proposition 3.5 we have

IsS(xx(2t2))1 = )
I,J€S(X)

(IIJ) QZ.GE(I'J) =

a
2tz I,J€S (X)

I

, I e (I,K)-m(K,3) = ] ] w(1,K) =
I,J€S(X) KES(X) I,JeS(X) K«J

J e (1,K) = ] Is@x2z)l.
JES(X) I,K<J JES (X)

Concerning Y % Z we get:

Proposition 3.7

For all a,b € X (a,b) = GY(a,b)-GZ(a,b) .

% «z

Proof:
It is clear that Y *2Z ~Y * Z, and thus for a <b
i - o
Homo'l(Y Zz,la,bl) = Homo’l(Y,[a,b]) XHomo,l(Z,[a,b]) .

%

If a ¥ b then the statement is trivial. ! ’

As a typical application of Proposition 3.7 let us consider
Moy the finite modular lattice of length 2 with n atoms. Obviously
Mo is the coproduct of n copies of 3 in the category of bounded

posets. Thus we have:

Corollary 3.8

IsxxM )l = ] (m2(x,an" .
I,J€S(X)
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Section 4. Numerical results

4.1 A natural candidate for application of the backtrack
program of Section 2 is the free bounded distributive lattice
on n generators, FDo,l(n)' By Proposition 1.1 (4)

FDo,l(n) o S(gn); The program was run for each poset 2", n < 6,
and the results are listed below. The n=6 case took 5 minutes
CPU time on an IBM 370. These agree with other published results,
e.g. [6],[22]. Another approach to enumerating IFDo,l(n)l is

found in [18], while asymptotic results are given in [14] and [23].
n I 3 4 5 6 %[95
~—
'FDo,l(n)l ’ 3 6 20 168 7581 7828354 /’7~]1,2
2.

For IFDo l(7)|there are conflicting results in the
14

erature;
[7] and [17]. Moreover, the magnitude is too great to allow for a
direct count of the elements. On the basis of Corollary 1.2 (2)
and the complete information on FDo,l(S) obtained by the

y algorithm we found IFD°,1(7)I = 2 414 682 o40 998 . This

L'confirms the result of [7]. The computation was based on the

following consequence of Corollary 1.2 (2):

|FD (n+2) | = [ (x11«1[y)1.
orl x,yEg‘Do 1

This computation was done in collaboration with Alan J. Burger [2].

4.2 Let Bw be the variety of pseudocomplemented distributive
lattices. For a general discussion of Bw consult [l].or [11].
The free algebra FBw(n) is finite, for n finite. The poset

J(FBm(n)) has been characterized in [3], [16], [21] .
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Using the algorithm on these posets gives the following:

n o 1 2
IJ(FBm(n))I 1 4 22
lFBw(n)I 2 7 626

It can be argued that IFB(3)| > IFD_ ,(8) |, and therefore is
’
beyond calculation at this moment, since it is known that

70
IFDO,l(B)I > 2 .

4.3 The class of de Morgan algebras is studied, for example, in
[4], [8] and [12]. There are three nontrivial varieties of de
Morgan algebras: Boolean algebras, Kleene algebras and the entire
variety of de Morgan algebras. The free Boolean algebra on

n
n generators has cardinality 22

. The free de Morgan algebra on
n generators is lattice-isomorphic to FDo'l(Zn). The free
Kleene algebra on n generators, FMl(n), is described in [4],
where it is shown that
J(FM; (n)) o {<x,¥>IX,¥ € n, XNY =@ or XUY = n} J
whence it follows that IJ(FMl(n))I = 2.3" - 2" | Using this

characterization of J(FMl(n)) the following was obtained: 4

n ‘ o 1 2 3

|FM1(n)| | 2 6 84 43918

4.4 In Example 2.3 a recursion formula for IS(Wm n)I was found.
r

The numerical values for m < lo, n < 7 are as follows:

| Q{\ML/



skl 636637 €13 B3

4
m\ 1 6 7
1 2 7 8
2 3 28 36
3 5 l4o 204
4 8 371 658 1086
5 13 . 7o ; 1547 3164 5916
6 21 157 2353 ||| 6405 15106 31998
7 34 353 2037 8272 26585 72302 173502
8 55 793 5864 29056 110254 345775 940005
9 89 1782 16886 lo2091 457379 || 1654092 5094220
lo | 144 4004 48629 358671 [ 1897214f 7911970 27604798
-

4.5 With the Wof the rve Section 3 we obtained J'.be/

following: i 6’%
660 6361 prbz %
n 18(2x2x3xn) | |8(2x2x4xn) | IS(2x2x5xn) | | 18(2x2x2x2xn) |
L;—
50 lo5
2 887 3490 11196
3 8790 59542 307960 160948
4 59542 650644 5157098 2068224
5 307960 5157098 60112692 18561984
6 130l6lo 32046856 530962446 127234008
7 4701698 164489084 3764727340 706987164
8 14975675 723509159 22326282261 3320153661
9 43025762 2801747767 114158490576 13583619496
lo 113414717) 9748942554 515063238810 49530070161 L
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