ETA=LORE Q gé
by Deuglas R. Hofstadter

Introduction,

The sequences with which this paper deals are infinite sequences
composed of a finite number of distinct integers; they have the
property of being cuas1-pericd1c sequences, by which I mean that any
finite "chunk" which occurs somewhere in a particular seqguence will
actually occur infinitely often in that sequance, Probably the most
important consequence of this i3 that the sejuence can be thought of
as a seduence of "chunks", as well as a sequence of {ntegers; now
if each distinct "chunk" has a name, then one can specify the
entire sequence uniquely, simpiy by stating the names of the chunks
which compose it, in the order in which they occur in the sequence,
It {ntegers are chosen to be the "names" of chunks, then the "chunke
description" of the origimal sequence is ftself a new sequence of
{ntegers, and it is called the "derivative" of the original sequence
(nothing to do with calculus), The sequences that are most
interesting are those whose derjvatives also have derlvatvves, which
also have dervvatlves, whxch a180.s4sse0 Efta=sequences constitute a
special case of this kind of "1nf$n1tely-d1fferentiab]e" sequence)
in fact, the derivative of an eta-sequence is another eta=sequence,
The feature whigh charactarizes eta~sequences 13 that they only
contain occurrences of two distinct integers == in fact, consecutive
integers. In a certain sense, there i3 a one~to=one correspondence
between the set ot 3ll eta=sequences and the set of all real nymbers ==
but at this poinrt, instead of cortinuing with general results about
eta=seauences, I will present eta=sequences {n the order jn which I
developed an acquaintance with them, and the general results will fjt
smoothly into that context, (7 was nmot the first person tc discover
eta=sequences; to the best of my kmowledge, A, Markov and G, Chris~
toffel were the first to investigate them, towards the end of the last
century, But since then, apparently no new work has been done on
eta=sequences == at least I don't know of any published work on
eta=sequences after those articles,)

An eta-sequence Crops UpP,

1 first came across an eta=sequence Aas I was working on a problem
having to do with squares and triangular numbers, (A triangulap
number {s a sum of consecutive integers, beginning with { == sych as
1l + 2+ 3+ 4+5 = 15; a square can be similarly described as a
sum of consecutive odd {ntegers, beginning with 1 == fopr instance
{t + 3+ 5+ 7 =16,) In the course of this problem, I asked myself
how many triangular numbers there are, on the average, hetween
successive sguares, Below, [ show the resylt of a simple empirical
fnvestigation, with small numbers:
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As ycu can see, there seem always to be either 1 op 2 triangutar
numbers between successive squares, (Where a trianmgular number and
a sauare coincide (2,9, 36), I have treated the triangulapr numberp

as {1 it were greater than the square, Had I treated {t as {1f it wére; .

smaller than the sauare, a similar sequence of 1's and 2's would have
resylted == more on that later,) Below, I exhibit many more terms
of the sequence shown above: ‘

212112121211212112121211212112121121212112121121212112121121212112,,,

Certainly this sequence gives a strong visual impression of being
quasi=periodics in fact, one might naively Quess that it is actually
a periodic sequence. As it turns out, such is not the case, A
natural thing to do in looking at this sequence is to bpreak it into
"chunks" == probably "21" and "211" are the simplest choice, 3elow,
the same sejuence is given, broken into these "chunks":

21 21(-21 21 211 21 211 21 21 211 21 211 21 211 21 21 211 21 211 ...

After a while of staring at this segmented sequence, it would occur
to most people that the 21{1i's a1ways occur singly, whergas the 21's
sometimes occur singly, sometimes in pairs. So why not write down
the number of 21's between successive 211's? This is done below,
(Note that this operation, although based on "chunks", i{s different
from taking the derivative, However, the two operations are actually
very closely related; their relation will be covered soon,)

21 211 21 21 211 21 211 21 21 211 21 211 21 211 21 21 211 21 211 ...
* | * % | x| x x | . x| * | * x| x|
(1) 2 ! 2 1 1 2 P

We will {gmore the parenthesfzed "1" at the front of the lowep
seauence, because 1t occurs before the first "211", What do we have?
It is a sequence which reads "2121121..0"¢ It OCCUPrS tO us that this
newWw sequence may actually be Just the old sequencel! O0f course such

a hypothesis needs to be checked further (it checks),,,and then
proved, 1f possxb1e. How to prove it is not’ obvious. We postpone
the proof to its correct chronological place in my personal develop=
ment of eta=sequences, and {nstead proceed to a second place where

an eta=sequence crcpped up,



Another eta=sequence Crops up

My curaosity was pwqued by this (empir1ca1) discovery, so I
tried to invent similar problems, One of these was the following:
how many powers of 2 are there between successive powers of 37 wWe
can construc*® the first few terms of the seguence as before:
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Again, only 1's and 2's appear; it is natural to try the same tpick
of looking at chunks, cnly here the chunks are not "21" and "211", but
"21" and "221", Below, we give the sequence, in "pre=chunked" form:

221 21 221 21 221 21 21 221 21 221 21 21 221 21 221 21 21 221 21 221

Now we cculd cocunt the 21's (whvch occur singly and doubly) between
221's == byt this time let us form the true derivative, by assigning
integers as names of the two distinct chunks, We can give to chunk 21
the name "1", and to chunk 221 the name "2", The chunk=seguence (the
derivative) can be simply read off of the above line, and we get:

It's another auasi=periodic sequence, composed of Just two integers)

. {1 put an exclamation mark, because I think {t's surprising, However,
{t is probably not as much of a surprise to you as it was to me,
because a few lines back you were told to expect it,) Now this
sequence is not the same as any of the previous ones we have seen,

even though 1t looks very similar to them, But it shares with the
other sequences the fact that it breaks up into natural chunks (21

and 211) so we can form its derivative (which will be the second depive
ative of the original seaquence). And as was said earlier, this

process can continue {ndefinitely.

It {s easy to derive a formula for the kth term of the powers=
of=2-between=pcwers=of=~3 sequence. First observe that the number
of powers of 2 up to (and including) a number N is

1 + [log N}
2

where "[x]" stands for "the greatest integer less than or equal to x",



For instance, up to 9 there are 4 powers of 2 (1,2,4,8), and

log (base 2) of 9 is a shade over 3, so that our expression gives
the right answer, Between the kth power of 3 and the k+lst power
of 3, therefore, the number cf powers of 2 is

k+1 k
1 + [lecg (3 1] = 1 = [log (3 )1)
2 2

= [(k¥1) Yog 3] = Ik log 3]
2 2

A general formula for eta=sequences

This expression prevides us with a model that we can easily
generalize, as follows:

eta (alpha) = [(k+{) alphal « [k alphal
k

Heres, we can take alpha to be any real number, For each value

of alpha, we get a characteristic seauence, eta(alpha), (In fact,
the name which Christoffel gave to etalalpha) was "characteristic
sequence of alpha",) It {s straightforward to show that always,
etalalpha) contains the two integers between which alpha lies, and
only those two 1nt»gers. (If alpha is jtself an integer, etalalpha)
is totally trivial, consisting meraly of an endless sequence of
alpha's,) So suppose alpha is pi; then etalalpha) must be composed
exclusively of 3's and 4's, In fact, etal(p!) runs like this:

33333343333334333333433332343333334333333433333343333334333333433,,,

The sequence {tself is compcsed of 3's and 4's; the "natural" chunks
which the eye breaks {t up into are "3333334" and "33333334" (the
tfirst occurrence of the latter chumk {s a bit further out than

what {s shown atove,)} To form a derivative of eta(pi), we must give
fnteger=names to these two chunks; one possibility would be

"old 3333334 ==> 6
Style" 33333334 m=> 7,

where the name tells the number of 3's in the chunk; or else we
could simply tell the total length of the chunk, like this:

"New 3333334 =w> 7
Style - 33333334 ==> 8,

é
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Both styles are quite matural, If we take the former choice, our
derjvative sequerce will count 3's between successive 4's, This was
the original notion of derivatiye, and from §t sprang the terms
"coun" == hepe 3 == and "sep" (for "separator") == which is 4 here,
In general, the coun will ke the closest integer to alpha, while
the sep i{s the seconcd=closest integer to alpha, The eta~sequence of
alpha will always have seps occurring singly, and coums variably,
To make the derivative, you count couns batween seps. Notice that
ff you literally mean "between seps", you have to disregard the very
firgt group of couns, since they precede the first sep, This was the
definition of derivat1ve fer a long time == I will call it the
"old=style" derivative,

The mew~style derivative {s almost the game == it's just that
(1) every term {s cne kigger than in the old=style derivative, and
(2) there i3 an extra term in the new~style derivativa, corresponding
to the first group of couns and sep,

Now suppose we take the old-style derfvative of eta(pi)e I will
leave out the actual sequence, because you have seen enough of them
to get the picture; it {s composed of &'s and 7's and has that typical
appearance of quasi=periodicity which is so characteristic of eta=-
sequences, It {s ftself ar eta~sequence == hut to what value of alpha
does {t belong? Clearly this is a key gquestion,

The Fundamental Theorem of Eta=sequences

The ansvwer {s given by this simple, central result:

Fundamental! Theorem of Eta=Seaquences, eta'(alpha) = eta(alpha'),
where by eta'(alpha) is meant the old=style derivative of etatalpha),
and by alpha! {s meant the quantity

8 = alpha

alpha = ¢,
where "s" stands for the sep of alpha, and "c¢" for the coun of alpha,

In the case of pi, this tells us that eta'(pi) is the eta=sequence
belonging to (4=pi)/(pi=3), which comes out to abeut 6,0625, Oup
knowledge of eta-sequences so far tells us that we should expect the
eta=sequence of 06,0625 to consist mostly of 6's, with sparsely=gspaced
7T'sy which is Just what eta'(pi) looks like, What about a proof for
the above result? The proof {s given below, Once it is proven for
values of alpha between 0 and {/2, 1t follows quickly for all
values of alpha,
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. Whem 0 < alpha < 1/2, coun(alpha) is zero, and sep(alpha) is one,
so etalalpha) consists of a row of zeros and ones, B8y referring to
the figure below, ycu can visualize where seps ("1") oceur, and where
couns ("0") occur., The real axis i3 plotted horizontally, and three
fntegers (N=l,N,Nt1) are ghown, Also, multiples of alpha are
fndicated by the letter "a", (Incidentally, this figure shows why
I sometimes ¢call eta~sequences "sidewalk-wsequences", If you take
steps of length alpha dnwn a sidewalk whose ceracks are { unit apart,
the number of cracks ycu cross on the kth step is the kth member of
etalalphal), provided the zeroth step begins exactly on a crack,)

| | |
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Nel N N+1

Stepping from one "a" to the next, you ¢an cross either one
integer, or none, When you cross ones, a "1" appears {n the eta=
seauence; when you c¢ross none, a "0" appears, Sooner or later,
each integer =« say N == gets straddled by two successive multiples
of alpha, When that haprens, a "1" appears in the eta-sequence;

{n fact, it must b2 exactly the Nth "1", Quer goal {s to count

the number of zeros until the mext "t",

Suppose that the multiples of alpha which straddle N are
p alpha and (ptllalpha; and that the multiples of alpha which
straddle N+1 are g alpha and (q+t)alpha, Then

eta (alpha) = eta (alpha) = 1
P q

and all terms of etalalpha) between the pth and the ath are zerons,
So how many zeros dces that make? Exactly g=p=l, And this wil] be,
by definftion, the Nth term of the derivative of eta(alpha), Now
we can specify both p and q in terms of N; there are exactly p
muitiples of alpha up to N, which means

P (N/alphal;

(1]

simflar)y, q [(N+1)/alphal,

Putting our pieces of knowledge togethar, we know that the Nth term
of eta'({alpha) is equal to gw=p=l; and this {s

[(M+}) betal « ([N betal,

where beta = {/alpha = |, What we have is the expression for the Nth
term of eta(beta); moreover,

{ = alpha
beta - - e ey www = alpha'
alpha = 0

which proves bur-theqnem.?br 0 < alpha < {/2,



Suppose alpha lies batween 0 and 1/2, and alpha + gamma = 1,
Then one can easily show that etalalpha) and eta(gamma) are
complementary to each other, fn the sense that where "0" occurs in
oner "1" occurs in the other, and vice versa, Consequantly
their depivativas are the same sequence, That is,

eta'(gamma) = eta'(alpha)

But eta'(alpha) {s known, frcm above: eta'(alpha) = eta(i/alpha =~ 1),
And

{ = alpha
alpha

gamma
- oseacwwes - gamma’

{ = gamma

So we have shcwn that eta'(gamma) = etal(gamma'), for any gamma between
1/2 and 1, The enly remaining values for which the theorem needs to

be proven are those of the form N + alpha, where 0 < alpha < 1, It

fs trivial to show that eta(N + alpha) = N + eta(alpha), and from
this it follows that eta'(N + alpha) = eta'(alphal), It is Just
a1ge?ra tc show that (N #+ alpha)! = alpha', and this completaes the
proof,

I now mentior two other results whose proofs are extremely simples

Theorem, As N approaches infinity, the average of the first N
terms of eta(alpha) approachas alpha,

Theorem, If alpha = p/q (a rational number in lowest terms)
ther etalalpha) is a periodic sequence, with period q, If
alpha i3 irrational, then etalalpha) is mot periodic,

Triangles-between=squares seen in a new light,

Let us now go back to the trlangles-between-squarns example,
As I pointed out, the aperation we performed on the sSequence was
not exactly taking the derivative. The chunks we perceived were
21 and 211; to form the derivative, we should replace 21 by some
integer, and 211 by a different integer., Let's do it {m the "old
style":

21 wed> |
211 w=> 2
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The sequence and its derivative are shown below,

2l 2il 21 21 211 21 211 21 21 211 21 211 21 241 21 21 21¢ 2t 211 ,,.
1 2 1 1 2 1 e 1 1 2 1 2 1 2 1 1 2 1 2 e

The underlining highlights the fact that the derivative is also
composed of 211's and 21's, It {s, however, not identical to any
of the sequences we have exhibited so far, But we can take another
derivative, thus gettirg the secand deprivative of the orfiginal
sequence, It is

2 1 2 { 1 2 A

Mow this sequence aprears familjar == it looks like the original
sequence! It is indeed the original sequence, Sa, for the second
time, we have found the original sequence coded in itself, The

first time, we get it by ccunting 21's between 211's; the second
time, we got it by takinmg the second derivative, It turns out

that the two processes are really onme and the same process. presented
In two superficially different ways, Consider the following ideat
when we took the second derivatjve, we broke the first derivative
{nto chunks; now each sfingle term in the first derivative represented
a chunk in the tcp=level sequence, so that to each chunk in the

tirst derivative, there 13 a "chunk of chunks" {n the top=leve]
sequence, Here it is visually:

21 211=21=21 211=21 211=21=21 21121 211=21 211=21=21 211=2{ ,.,
2e=l==1  2e=m=] 2eeele=] 2es=s]  2m==] 2mesle=] 2==a] ..}
2 1 2 1 { 2 1.t

Each number in the bottom sequence reflects the occurrence {n the
top sequence of a "seccnd=order chunk" (chunk of chunks) == either
2112121, or 21121, Now when we counted 21's between 211's, we were
in effect assigning "2" as a name to the superchunrk 2112121, and
"{" to the superchunk 21121, And that }s exactly what taking the
second derivative dces, too, So the two processes come down to the
same thing, This points out the important fact that what you get
for your first derivative depends on what you choose for "chunks",
fn the top=leve! sequence , If we'd chosen 2112121 and 21121, then
the f{rst derivative would have given us back the original seauence,
but with 211 and 21 as chunks, you have to wait until the second
derivative to return the top=leve! sequence,

In eta=sequences, the ysual choice for a chunk Just contains a
single sep, preceded or followed by some couns, Such chunks are
called "first grder chunks", The natural way to make "second=order
chunks" {s to make superchunks in the top=level sequence which reflect
the first=order chunks in the f{rst derivative, Third=order and
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higher=order chunks are defined analagously, There are always just
two Nth=gprder chunks, no matter what N Is, The higher the order

of a chunk, the longer it {s beound to be, As N goes to infinity,
the length of toth Nth=order chunks goes to 1nfin1ty. A 17«th ordep
chunk {s a giant segment of the eta=sequence of alpha, and the
arithmetic average of its terms provides a good approxfmation to
alpha, We will go into this in more detal!l shortly,

EFta~=sequences in full generality

Going back to the sidewalk-image, recall that I pointed out
that the sidewalk~segquence gives eta(alpha) == provided you start
on a crack, What happens {1f you don't start on a crack? Suppose
that the starting=point of your zeroth step is displaced by
a distance delta from a crack, Then you get something very much
like an eta=sequence, In fac*, I call it etaCalphajdelta), What we
have oreviously called etalalpha) is the same as etalalphaj0), The
formyla for the kth term of etalalphajdelta) is easy to derive, and {s:

[(k + 1) alpha + deltal = [k alpha + deltal

From now on, by "eta=sequence", I mean something of the above form,
Now surpose delta equals minus alpha., Then we have

({k + 1)alpha = alphal = [k alpha = alphal

eta (alphaj;=alpha)
k
[k alphal = {[(k = {) alpha]l

= eta (alphazn)
k=1

As a matter of fact, this is jntuitively obvious: shifting every step
to the left by alpha only postpones arriving at a given spot by
exactly one step, In general, shifting every step to the left by

m times alpha has the effect of postponing the mament of arprival at

a given spot by m steps:

eta (alpha;=m alpha) = eta (alpha;0)
k K=m

You can move the whole sidewalk to the right or left by one square
and nohady will know the difference, This {s saying that you can
add or subtract any integer to delta and the eta-sequence won't
change, In other words, only the fractional part of delta == which
{s denoted as "{deltal" == matters, In symbols,

eta (alpha;delta) = eta (alpha;{delta})
k. k



There is a generalizati{on cf the Fundamenrtal Theorem of
Eta=Sequences, which holds for all eta=sequences, I state it
without proof, since the proof follows the l{inas of tha earlier
theorem,

Generalized Fundamental Theorem of Eta=Sequencas, _
eta' (alepha; delta) = eta (alpha'; delta'), where alfrha! is
a3 before, and delta' can be defined the following way:!

/ f({alphal},{deltal), 1{if {alpha} < 1/2

delta' = | A
\ ft({=alpha},{=deltal), if {/2 < {alpha}
where '
/ =y/x fop x+y < |
fixey) = | ' ' ,
N\ (l=y)/x for x*ty > 1.

So that you are not deprived of the experience of seeing an ‘
eta~seduesnce whose delta is non=zero, I now exhibit eta (sart 2; 1/2):

2t1211212121121211212121121211212112121211212112121211212112121211,.,

Do you recognize this sequence? It is our old friend, Triangles-
between=squares. When I discovered this, 1 was really amazed,
How {8 it possible to prove this? Actually, it is quite easy,
First, let us derive a formula for Triangles-between=squares,

The nth triangular numher {3 equal to n(n+1)/2; {f we invert
this function, we will Qet a function that tells us how many
triangular numbers there are up to a given size, In other words,

{sart (2N « 1/4) =1/2]

is the number of triangular numbers less than or egqual to N, Therefore
we should evajuate this auantity using the square of k+i1 as N, and ‘then
the square of k, and then take the df fference:

2 2
[sart(2(k+1) = 1/4) «1/2] = [sqrt(2k = 1/4) = 1/2]

This expression gives the kth tern of triangies-between-sauares. It
can be simplified, with the help of the following identity (whose
not-too=tricky proaf is omitted, since it i3 not central to eta-theory)

2 : :
[sart(2k =1/4) = 1/2] = [k saqrt 2 = /2]

With ft, we get a revised expression for the kth term of the
triangles=between=squares sequence?



jf
[(k+1) sart 2 = 1/2] = [k sart 2 = (/2] <’//

= eta (sart 2; =1/2)
k

= eta (sart 2; {/2)
k

which is the desired amazing resuylt == perhaps less amazing for its
scrutability, With {t, we can at last pProve the observation that
when you count 21's between 211's in Triangles=between=gquares, you
get the same sequence back, We now know that counting 21's between
211's is the same as taking the second derivative; and so the
question amounts to whether or not eta(sqgrt 2; 1/2) equals its own
second derivative, A few manipulations show that alpha' and alpha'!
are both equal to sart 2, and that delta' equals (3 = sqrt 2)/2, and
delta'' equals 1/2; ard that {s that,

Now to round out oupr discussion on triangular numbers between
squares, we can take a look at what happens when we handle co1ncidences
of triangles and squares (such as 36) in the other way than bhefore,
This means counting the triangular number as {f it were less than
the square of the same magnitude!

0 4o

16 2

9 5 36 4
l | l

l |28

! !

1

|
3 € 36 45

{ ta 15! 21

i
|
|
| !

4 0
| I
I I
I l

(1)...1....1.'..'..2.‘...1..:.;.2.'..-....1‘..‘....1....'..i.a....'...t.......‘...:-.

We have a new gquasi=periodic sequence of i's and 2's which differs from
the oariginal one only in a few scattered places, (Actually, saying

"a few" {3 a distortion; there are in fact infinitely mamy squares
which coincide with triangular numbers, but such coincidences are

quite sparsely spaced == or, to Justify my earlier terminology, they
are "few and fap between"}) If you gount the paranthesjzed "1", this
sequence .begins with a trfo of 1's, It's displayed more fully below,
together with {ts first and second derivatives, using 12 and {12 as
"ehunks",

(1)112121;21211212112121211212112121211212112121121212112121121212112..
2 12 12 12 112 12 112 t2 12 112 12 112,44
i ! 1 2 1 2 i 1 2 ! 2

Well, not surprisingly by now, {t equals its second derivative (but {s
nevertheless different from the other version of triangies-between-
squares).



Finite segments of eta=sequences

Suppose yeu had a window six units wide, through which you could
look at some eta=sequence, What I mean by this is that you could see
exactly six consecutive terms of that eta=sequence, How many
different scenes could you be entertained by? . Naturally, it ought to
depend on which eta=sequence you have got, so let us try 1t with
eta (sqgrt 2; 0), Here are the possible views through a 6=unit window}

112121
121121
121211
121212
211212
212112
212121

Seven, they are seven, What may surprise you is that this resylt holds
whatever the eta=sequence =- there are always seven different views
through a é=unit window, And there 13 nothing special about 63 if you
have a window of width n, there are always n+l distinct views to be
savored, Actually, the claim {s not quite true; it requires alpha to
be irrational, Thus the theorem can be stated formally this way:
Given an eta=geguence belonging to an irprational alpha, there are
exactly n+! distinet sagments of length n, This may seem like a
remarkably simple answer to a complex combinatoric problem; but
altheugh it can be looked on cembinatorically, there {3 an easy route
to the answepr which avoids any combiratorial analysis, The proof is
as follows,

Each of the distinct seaments of length n can be pproduced by
using an apepropriate value of delta, amd generating the fiprst n terms
of etalalpha; delta)., Since there are only a finite number of
distinct segments, but an uncountable number of delta's between 0
and 1, many delta's yield the same segment, A good guess {s that
for each distinct segment there is a little interval inside (0,11
where all the delta's produce that segment, This idea is pictured
below, using segments of length 2 and alpha = sqrt 2,

lall delta's! all delta's | all delta's |
there yield | here yield | here yiald |
' “11" l ll12" ' “21" l
0 0s171000 0,587, 1

This {s exactly the way things work, The {internal demarcation-lunes
are determined by the first n multiples of alpha (as it turns out),

To see this, imagine that the first n multiples of alpha, and zero,
have been marked on a transparent plastic sheet which we can slide
above the "sidewalk" defined by the integers, Set the plastic sheet
on the sidewalk so that their zeros coincide, which sets delta to zero,
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and gives a segment of lencth n, Now slide the sheet to the right,
Unti! ome of the mar<ks on the sheet crosses an integer=}ine (crack

in the sidewalk), none of the terms in the segment will change,

When a mark does eventually cross a line, the segment will change,
Remember the kth term of the segment {3 given by the number of lines
crossed between the k=1st and kth marks, Therefore, when the kth mark
crosses a line, the kth term in the segment increases by 1, and the
k+1st term cdecreases by 1, (Exceptions: when the zero=mark crosses

a line, only the first term of the segment changes, decreasing by {;

and when the prightmost mark crosses a line, only the last (i,e, the nth)
term of the segment changes, increasinc by 1,) As the sheet continues
sliding to the right, cne bty one, the marks w111 cross integer~]ines.

No two will do sc simultanecusly, because alpha is irrational, Now
eventually, the zero on the plastic sheet will reach the 1nteger 1 on
the sidewalk, Once that has happened, the whole thing starts over
again, But in the meantime, each mark on the sheet will] have crossed
exactly one intager., (This must be so, because the sheet has moved

one integer ynit to the right,) Since there are n+l marks on the sheet,
there have been n+1 distinct segments generated, That's the proof,

and {t corrcborates the picture we had of n+l little intervals in (0,13,

Extraction

We are about to wind up the "first phase" of our discussion of
eta=sequences; this phase has consisted largely of explorations of
the hor{zontal aspect of eta=sequences, "Horizontal" properties are
those which involve a single eta=sequence, and which make 1ittle or no
explicit reference to its derivatives, They are horizontal because,
obviously, a single eta=seauance {3 thought of as extending out to
intfinity horizontally, "Vertical" properties are coming up soon,
Now I do net mean to imply that there is a clean separation between
horizontal and vertical prcoert?es- in fact they are very tangled up
together and probably it is a silly distinction == but the distinction
perhaps can aid orae's intuition, as one grows used to {t, When we
come tao vertical properties, I am sure that you will get a clearer
fdea of this distinction,

But now I would like to give an example par excellence of horie
zontal properties, a property which I call "extraction", The idea {s
this, To beqgin with, write down etalalpha;0), Now choose some
arbjtrary term In it, called the "starting point"., Beginning at the
starting point, try to match etalalpha;0) term by term, Every time
you find a match, circle that term, Soon you will come to a term
which differs from etalalpha;0), When this happens, Just skip over
§t without circling {t, and 1ook for the earljest match to the term
of etalalpha;0) you are seeking., Continue this process indetinitely,
In the end ycu have circled a great number of terms after the starting
point, and left some uncircled, We are interested in the uncircled
terms, which are now "extracted" from etaCalphas0), The first
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interesting fact is that the extracted sequence is itself an eta=-
sequence; hut what's more, {t {s the subsequence of eta(alpha;0)

which begins two terms earlier~ than the starting=point! To decprease
confusion, I now show an example, where instead of circling I underline
the terms which matc¢h etalalpha;0), In this evample, alpha equals

log (base 2) of 3.

I have chosen this "2" as the starting point,
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2121221 2212312122121 22
12121 2212122121221 21212212122121212

The underlined sequence matches the full eta-sequence, term by term,
~ Now what fs the extracted sequence? It {s:

21 2122121 21 qesses

And you will find that this matches with the sequence which begins
two places earlier than the starting=point, Carrying it further is
tedious, and does nothing kut confirm our observation, Why does

this extraction=property hold? At this point, I must admit that I
don't know, It is a curfous prorerty which needs further investie
gation, For example, who knows what happens if, instead of using
etalalpha;0) as the sequence to be matched, you use etalalphajdelta)?

"Aletsum"

As a transiticn into vertical properties, I cite one last problem
which gives the appearance of being a "horizontal" problem, but whose
answer turns oyt to be very intimately related to vertical properties,
This {s the aquestion of "altsum" =< an abbreviation for "alternating .

sum", The definition {s:

‘ k+1
altsum (k) = eta <« eta + eta = ,,,, * (=1) eta
' 1 2 3 k

(In the above, a]pha and delta are assumed known and fixed )} Now {f
alpha {s {rratifonal, {t makes sense to guess that the terms of such
a sum tend to cancel each other out, more or less, over a long span,
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" Therefore, the expected approximate behavior of altsum is that it
will hover near zero, straying away occasionally, somewhat like the
"mandom walk" of a drunk away from his )amppost, Rut one expects

the fluctuations to be small, in the following sense:?

altsum (k)

] 1"\ L LT T Y 2% = 0.

k

This follows from a genera! theorem which one can assert about
the eta=sequence of any irrational nuymber:

Theorem: The arjthmetic average of terms in etalalpha; delta)
whose subscripts form an arfthmetic progression is alpha,

The proct of the theorem depends on a famous property of the
myltiples cf any irrational == namely, that they are uniformly
distributed, modulo 1, This means that out of the first N
multiples of alpha, the proportion whose fractional parts lie

in any interval fnside [0,1] is asymptotically equal to the length
ef that interval, Now from the uniform distribution of the numbers
{n alpha), an immediate corollary {s the uniform distribution of
the numbers {n alpha + delta}, whatever delta is, We can now apply
this fact to- prove the theorem, First we make the remark that there
fs a dividing=ljne inside the interval [0,1] such that the position
of {n alpha) with respect to that line determines whether the nth
term of the eta=squerce is a coun or a sep, (This Just says for
segments of length | what was said a couple of pages earlier, for
segments of arbitrary length,) It {s {}llustrated below,

"ecun country" "septalia"

! |
| |
| |
' 1

O o o —
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Suppose the arithmetic progression of subscripts is qk+p, with k
varying, Then what matters in the above diagram is where the
numher {(gk+plalpha + delta} falls, Numbers of this form are,
however, also of the form {k beta + gamma} where beta = q alpha,
and gamma = p alpha + delta, Now beta is frrational whenever alpha
{s¢ which allows us to say that the multiples of beta, shifted by
gamma, are uniformly distributed in 10,11, Therefore, the proportion
of such numbers which land in "geptalia" is agsymptotically equal to
the length of septalia, But the proportion of numbers of the form
{k alpha + delta} in septalia is also the length of septali{a == which
means that the proportion of seps in the suhsequence defined by the
arithmetic progressfon Qk+p {3 aaymptoticalIy the same as {n the
eta-=sequence 1tsolf (Of course the proportion of couns is the
same too.) Consequently, the average of the subseaquence must be
equal to the average of the seauence itself,
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Fimally we can prove that altsum(k) becomes negligible in
comparison to k, To get altsum(k), you add up k/2 terms of eta whose
subscripts are odd, then you 'subtract from that the sum of k/2 terms
of eta whose subscripts are even, From the just-proven theorem,
both the subsequence whose subscripts are odd, and the subseauence
whose subscripts are even, have average a'pha, Therefore both )
sums will he of magnitude (k/2) alpha, with correction terms which
necessari{ly become small compared to k, as k approaches infinity,
When the even sum i3 subtracted from the odd, all that {s left is a
quantity which is small ‘compared to k == 3o the limiting value of
altsum(k)/k 1{s zaro, as we gat aut to prove,

But how does altsum act, in more detail? When does it have
large fluctuations? Below are the first 100 terms of the altsum
belonging to eta (sqrt 2; 0), so that you can see for yourself,

1 ®f 0 =2 ={ =2 0=l | 0 1 =f 0 @2 =f =3 =2 =3 =] =2
0 w1 0 =2 o] =3 =2 =i @3 «4f w2 @3 =] =2 =] =3 =2 =4 =3 =4
@2 ®3 @] w2 0 =] 0 =2 =] =3 @2 =3 =1 =2 0wl 1 0 | =i
0 =2 =] @2 0 =1 | 0 | «f 0 =2 =f =3 «2 =3 =] =2 0 =}
0 =2 =] =3 =2 =4 =3 =4 =2 =3 a] =2 =] =3 =2 =4 =3 a5 =f «5

Aside from the {nitial term of {, all the terms are non=positive,
And successive minima are reachad at the 2nd, 4th, 16th, 28th, and
98th terms, What are these numbers, and how do they continue?

As a matter of fact, they continue as follows:

2, 4, 16, 28, 98, 168, 576, 984, 3362, 5740, ...
You will notice that the differences between elements occur twices
2 {2 12 70 70 408 408 2378 2378 ,...

This is anothepr curious effect, whose exp1anation will be slightly
postroned, until we have built up a repertoire of "vertical" concepts,
fn terms of which an explanatinn becomes very natural,

"Veptical" concepts

Vertica] concepts are those related to the results of repeated
differentiation of an eta=sequence, The f{rat vertical concepts we
describe are the "Vertical Coun and Sepm=sequences" (VC and VS
sequences), The nth term of VC {s the coun of the nth derijvative
of etalalpha), The analegous definition goes for VS, The sauare
root of two provides us with an easy (but needless to say, atypical)
example!
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There i3 mo reason that we shou1d expect such simple behavior in the
VC and VS saquences belonging to randomly chosen values of alpha,
In fact, the VC and VS of pi exude an utterly different aroma;

Ve . VS8
n=9 3 4
ns2 6 7
n=3
n=4
n=5

"and so on" == {f you can find any rhyme or reason to the seauences
abovel On the other hand, e has very regular VC and V3 sequences!

yC Vs
3 2
3 2
i 2
4 3
1 2
6 )
1 2
8 7

Look at the VSegaquence, What would you say is 1ts pattern? If you
are slightly naive {n number theory, you might guess, optlmistically,
that the pattern of the VS~sequence is: primes alternating with 2's,
However, that would be too spectacular, Nature nevar hands you the
primes on a platter, The actual pattern {is more humble, but the vepy
fact of a pattarn being there at all is remarkable, when you think of
pl! 1t consists of the successive odd numbers (but with "2" peplacing
"1")y altarnating with 2's, And the VC=-sequence, after a shaky start,
consists of an alternation between the even numbers and {'s,

It you have ever seen the simple continued fraction for e, you
may have noticed a similarity, Here it {s:
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The denominators go: 2, Ly 4y 1, 1y 64 1+, 1, 8 1, 1, 10, .;...
The simvlarxtv fs sc striking that one wonders {f these aren't two
representations of one thing,

Eta=sequences and Continued Fpractions

There {s a definite relation between eta=sequences and continued
fractions, To show it, let us go back to the definition of the
derivativa, Recall that I spoke of two "styles" of assigning names
to chunks, the old style and the new, In the old style, a chunk like
211" wauld get mamed "2" because of the two 1's, but {m the new style
it gets named "3" because that is its length, Let us consjdepr what
happans {f we take derivatives {n the mew style, Every term of the
derivative is increased by {; hence the,derivative is no longer the
eta-sequence belonging to alpha', but to l+alpha'!, We could make
matters confusing, by calling L+alpha' the "new=style" alpha',,,but
fnstead of that we will write "D(alphal)" for {t:

s = alpha
alpha = ¢

¢ and s bejng the coun and sep of alpha, as hefore, Let us put

X S gm=¢

Naturally, x {s a function of alpha, and equals Plus or minus one,
Then we can write

X
D(alpha) = e -
alpha =~ ¢



Inverting this eauation, we get

x(a?pha)
a‘pha = C(a‘pha) b momecowoeow
D(alpha)

Here, alpha i3 expressed as an integer plus (or minus) a fraction with
nymerator |, The trick is to express D(alpha) likewise:

x(D(alpha))
D(alrpha) = ¢(D(alpha)) t ==ceccccee=
D(D(alpha))

This trick can be repeated for D(“(a1pha))' then D(D("(alpha))), etc,,
Each time the tprick is done, it corresponds to one more level! of
ditferentiation of the eta~sequence, So we are looking at the vertical
structure of an eta=sequence this way, Now the whole thing can be
summed up in one grand continued fraction; but before we write that
down let us make some changes in convention, I Just introduced the

VC and VS sequences and so, presumably, you are not so used to them
that vyou will vigorously protest if I change my definition of them,.,
All I propose {s that nverything should be as before, except that al]
derivatives should be taken according to the new style, That has

" only one effect: it raises each term of VC and VS (except the zeroth)

by one, Therefore, our revized VC and V3 for the square root of two
go:!

Ve VS VX
n=0 1 2 41
n=t 2 3 +1
n=2 2 3 +1
n=3 2 3 +1
etc.

I have put {n an extra column for the X=sequence, The nth element of
VC (or VS) {s now equal to the coun (or sep) of D(D(,..D(alphal).ee))s
where the number of D's 13 n,

Now we can write down the continued fraction for alpha, using
the redefinmed VC~sequence, and the VXw=sequaence:

alpha = VC(0) + VX(0)

VC(1) + vX(1)

- e w w w

vCe(2) +

Heres "YC(n)" gtands for the nth elemant of the VC belonging to alpha,
of course,



For jnstance,

O
sqrt 2 = 1+ ' <//—-"“\ € W\gx'e&c\

1
2 +

Now I must hasten to mention that this kind of continued fraction
{s slightly different from the most commonly exhibited kind, the
difference being that the ysual ones only have +1's in their numerators,
never =1's (which will happen to our fractions whenever VX(n) = =1),
The usual type of continued fraction is called "simple”; our fractions
also have a name: "nearest-tntpger continued fractions" (this is the
best translation I can give tor the German phrase "Kettembpueche nach
naechsten Ganzen", which s what Oskar Perron calls them in his classac
work on continued fractions, "Die Lehre von den Kettenbruechen", which
{sy unfortunately, out of print),

Many of the theorems which hold for simple continued fractions
carry over to nearest-integer continued fractions. Far instance, a
famous theorem on simple continmued fractioms asserts that the sequence
of denominators in the continued fractian for a real number w(!] be
periodic if and anly if that number i3 a quadratic irratiomality,
(Here, the word "perfodic" means that after a while, the sequence
repeats aover and over againm; but the block which is repeated need not
gtart with the vary first term,) A slight modification of this
statement holds for VC and VX sequences, namely:

If the VC and VX sequences belonging to alpha are baoth perjodic
(in the ahove sense), then alpha is a quadratic irrationality;
and conversaely, if aloha is a quadratic irrationality, then its
VC and VX sequences are necessarilv periodic,

This theorem can be equivalent1y restated, using "Vs" in place of "yxn,
A corollary i3 this theorems

Alpha s a quadratic {rrationality if and only {f there are
unequal fategars m and n such that the mth and nth derivatives
of eta (alphat 0) are identical,



The function INT

Thers is no criterfon by which one can distinguish a VC=saquence
from a V3=saquence. For instance, the VC=3sequence of pi could very
easily be the VS-sequence of some other number (in fact it §3 the
VS=sequence of many other numbaprs!), Because of the indistinguish=
ability of VC and VS=se2quences, one is naturally led to ask, what {f
! {nterchange the VC and V3=sequences of alpha == what number has for
{ts VCesequence the VS=sequence of alpha, and for {ts VS=sequence the
VCmsequence of alpha? What number beta has the following VYC and VS?

Ve Vs

ns0 2 1
n=l 3 2
ns2 3 2
n=3 3 2
n=4 3 2
[ ‘0 L]

This number, whataver It {s, will be called "INT(sart 2)", because
fts VC and VS are those of sqrt 2, interchanged, Generally, for
beta to be equal to INT(alpha) means that for all nmnon-negative n,

VC (beta) = Y5 (alpha); VS (beta) = VC (alpha),
n n n n

Obviously, |f bheta = INT(alpha), then alpha = INT(beta), as well,
It so happens that

INT(sqrt 2) = phi,
Wwhare "phi" stands for the "golden ratio',
phi = (1 + sqrt S5)/2,

(The proof of this comes from_the fact that D(phi) = { + phi,)

One can easily see that INT of any quadratic must be anothepr quadratic,
simply because the new VC and VS sequences are periodic, You may have
noticed that INT(alpha) {s not yet well=defined for prational values of
alpha, This {s because the VYS~gequence for any rational number hits

a snag after a finite number of steps == {n fact, on the mth step,
where m {s defined by:

D(D(.L.D(afbha)}.;)) = an integer
/

\
\ /
mD's
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Notice that such an m {s guaranteed to exist, for only jrrationals have
tnfinitely differentiable eta=sequences, On the mth step, then, VC

{s well~defined (being the integer itself), hut VS is not, since the
second=closest {nteger to an {ntager is not waell=defined: there are

twn vying candidates., The most eathetically pleasing solution, perhaps,
I: o define INT at a rational value as being the arithmetic average

ot two values, one calculated by taking the mth VS to be onme less than
the mth VC, the other by taking the mth VS to be one graater than the
mth VC, Under this definition of INT at rationals, it is edasy to see

that INT of a rational {s also a rational, So we may now say!

If alpha is algebraic of degree 0 (an integer), then
INTCalrha) is l{kewise algebrajc of degree 0,

If alpha Is algehraic of degree | (a rational number), then
INTCalrha) {3 likewise algebraic of degree 1.

If alpha is algebraic of degree 2 (a quadratic), then

INT(alpha) is likewise algebraic of degree 2.

The pattern i3 suggestive, {s it not? However, I am not syre {§ the _
extension of this pattern is valid or not, A most interesting question,
Incidentally, {f it were valid, then one would have as a corallary

the following statement: ”

If alpha is transcendental (not algebraic of any dedree),
then INT(alpha) Is likewlse transcendental,

Certainly it {s provocative to ask what mathematical significance
a,caonstant such as INT(e) or INT(pi) has, I have not been able to
11 any for either, Their values are, roughly:

INT(e) = 2ieeveonnens INT(PI) = 3,86,0uasncsvas

Now before gofng any further in the description of INT, it {s vital to
exhibit a plot of 1t, All the information about INT is contained in

a plot where alpha runs only frem 0 to I, To get the value of INT far
any other value of alpha, subtract the integepr part of alpha, consylyg
the graph between zero and one, and then add back the integer part:

INTC(alpha) = INT (alpha=~N) + N

This means that the graph of INT consists of imfinitely many copies of
the contents of a single "box", touching each othep at their corners,
as shown on the next page, What happens inside each of the boxes 13
then shown or the page after that, '

. The most striking fact, at first glance anyway, !s how the graph
Inside each bex == henceforth called a "box=graph" == consists of scads
of 1ittle "subgraphs", A1l the subgraphs seem to resemble each other,
and are aligned more or less parallel to each other, the only diffeprence
2eing that as they recede {nto the corners of the box, they get smaller,
and smajler, and smaller... But the next level of observation brings a
ret greater aurprise: all the little subgraphs themselves seem also to
76 ~ompased of subgraphs cf their own, And, to the extent that the

N



graph allows you tc peaer {nto the Jevel beyond that, the same thing
seems to te happening, It never comes to an end, It may seem mindw
beagling at fipst, but after 1t has settled, it makes a little sense,
because it is reminiscent ef the way that an eta=sequence yields
another eta=sequence, on being differentiated, which yields another
one, and so on, Of course, infinite differentiability requires alpha
to be frrational == but that brings us back to INT, which seemed to
be more natural to define at {rrationals, anyway,

And then the idea of INT hits you: the little subgraphs are
"copies" of the box=graph, That poses a question, however: "How can
the subgraphs be ccries cf the box=graph whem the box=graph f{s straight.
and the asubgraphs are all curved?" The answer {3 that they are copies
{n an extended sense of the word == they are not only of a different
size than the original, but they are also a little distorted, The
distortior is not chaotic or random, though, but quite neat and
systematic,

1f you 1ook back at all the boxes touching each other along a
diagonal, you will see that the largewscale structure of INT is
just like the structure {n each box: many repeated parallel copies of
one item, The total graph contains fdentical copies, and {s therefore
of infinite extension; a box=-graph, on the other hand, involves the
squeezing of an infinite number of corifes into a finite space, and
therefore causes shrinking to occur, near the corners, You can
probably imagine a giant with infinite reach picking up the whole
INT=graph, rotating it 90 degrees, and then compressing {t so that }t
will fit !ns1de a 1x! box (and in the process, slightly distorting the
pleces composing 1t), Such_a squeezing=process, {f done right, would
transform the total graph of INT into one single box-graphl A proof
of this weuld establish all the earlier speculations about the nested
structure of each individual box=graph, We will prove that such a
giant exists, {n the following sense: we will provide a monotone mapping
which compresses boxes 2 through infinfty down into the upper left half
of a box=graph, (The lower pright can be taken care of by symmetry,)

Proof of the Nesting=Property of INT

Earlier, I showed a way that INT(alpha) can be calculated from
just one box=graph! shift alpha into the relevant region, use the
box=graph, then un=shift the result, This has the general form;

INT(alpha) = g(INT(f(alpha))

where f §{s a function that shifts any alpha {nto the releavant reg¥on
cf the x-axis, and g Is a function that shifts values of INT obtatined
from the box=gragh back {nto the correct part of the y~axis, When we
did this before, f(X) was X=N and g(y) was y+N; they were 1nverse
functions. The resulting equation told us that one box=graph looks
exactly the same as any other box=graph, because the functions f and g
are simple translations: they do not shrink or expand, they merely
ahift, To prove our nestinge=property, we will need an equation of the
above form, but where f is a "shrinking=function", ome which carrles
values of alpha between 2 and {nfinity into Values lvying between

0 and 1/2; and where g 1s an expanding=function, which carries the
amall {nterval [0, 1/2] back onto the half=line from 2 to infinity,



Fortunately, such an equation is not hard to come by; in fact it
practically falls in our laps, once we know we are looking for ft!
It all comes from lecoking at the VC and VS=sequences of alpha and
INTCalpha)., Let us exhibit them, First, the table for alpha:

VC=seq "~ yS=seq
r=0 ACO) alpha BCO)
n=i ACL) D(alpha) BCl)
nFE A(2) D(D(alpha)) B¢2)

. L] . ]
[ [ . ]
[} ] [ ] [ ]

C:} The reason I have included the numbers alpha, D(alphal)sees in the
ddle is the following, The VC and VS=sequences which begin at any
given level and continue downwards are VC and VS~sequences in their own
right, which belong to the number written at the corresponding level
in the middle., For instance, the VC and YSe=gequences belonging to the
17th derivative of alpha are, respectively, AC17), A(18), A(19),;,.. and
B(I?)l 8(18)1 B(lq)lvoo

Now INTCa1phaJ w= et us call {t "beta" == has the fcllowing
analogous table:!

VC=snq VS=3eq
n=0 B(O) beta ACC)
n=1 B(1) D(beta) ACl1)
n=2 B(a) D(D(beta)) AC2)

. . ] .
Ed L . [}
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Now suppose we chop off the top leve! In the table for alpha,
The remaining saquences are A{1), A(2)ress and B(1), B(2)s.eer which
are the VC and VS=sequences of D(alpha), If we now {nterchange, we
have the VC and YS=sequences of INT(D(alpha)) =~ by definition of INT,
But they are Just the same as the VC and VS=seguences, of D(beta), as
you can see by looking at the table for beta, Thereforec in calculating
D(INT(alphal)), we can go efther of two routes! first get INTCalpha)l,
then take D of it, or else take D first, and then get INT of that,

Symbolically,
INT(DCalpha)} = D(INTCalpha)), <gir—””””—

This §s close to, but not exactly, what we want, Leat us write
gamma = D(alpha), Then what {s alpha in terms of gamma? From the
discussion on continued fractions, we have

s ~ ¢
alpha 2 ¢ ¢ o===~
gamma



Now, {f gamma alcne {s given, then alpha still has not been determined;

we have the freedom to chcose the coun and sep of alpha as we like,
Let us denote the value of this expression, with c¢=a and s=b, by

-1
0 (gamma)
a,b

(0f courser a and b must differ by one.) If we substitute this into
the earlier egquation, we get

-
INT(gamma) = D(INT(D (gamma))
a,b

Lo and behold, we have some candidates for the shrinking and expand}ng
functions! For notational simplicity, let us use "X" for the argument
ef the shrinking=function D=inverse, and "x" for {ts value; likewise,
"y"* for the argument of the expanding~function D, and "Y" for {ts value)
Let us take a=0, and b=} in the shrinking=functien:

-1
> X = =
yZd D (X 1/X

Now {f we let X vary from 2 to {nfinity, the shrinking=function's

range wil] be the interval [0, 1/2], Suppose we see what happens when
X varies inside box number 2, The values of X are shifted lnto

the range ([{/2, 1/3] by the shrinking-functian; them INT provides yls
bhetween 1/2 and 2/3; finally, these y's are transformed by the outer
D=function into Y's between 2 and 3, fitting, as expected, {nto the
original box, Thus we see very directly how a particular box {s repre=
sented by a particular subgraph, A similar argument holds for any
other box to the right of the one Just considered, The box between

N and N+1 {s mapped onto a subgraph located between /N and 1/N+{,

As promised, this shows how the subgraphs of box | (or any ather box)
are ”copies" of the box=gpraphs from 2 out to {nfinity, Since each
box=graph {s symmetric with respect to both of {ts diagonals, the proof
for the lower right half {s {mplicit in what we have done,

An additional fact about the ttle copfes, which s furnished to
us by the shifting~equation, fa how a box-graph must be compnessed
horfizontally and vertically {n order to be brought to coincide with
a given subgraph, Consider once again the mapping between box and
the sybgraph between (/2 and {/3, The shr{nking-funct{on f(X) is

x = /X
and the expanding=function a(y) {s
Y = 1/tLey),
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Remember that f maps from the box to the subgraph, while g maps
from the subgraph back to the box, Consider two nearby points on the
X-axi3, and what f does to them, I{ they are X and X+dX (with dX
fnfinitesimal) then f carries them {nto f(X) and f(X+dX) pespectively)
and the latter, by Taylor's theorem, equalas f(X) + dX f'(X), The
separat!on between the 1mage-points, therefore, is multiplied by the
tactor f'(X), This {s called the "local comppression factor" (and
notice It is written as a function of the variable Big=X == the
variable belcnging to the box-graph, not l{ttlemx, of the subgraph)
'The local expansion=factor due to g is g'(y) == but we are interestad
{n compression, not expansion, sc we must take the reciprocal,
Secondly, we want to write {t {n terms of Blg Y, the box-graph
yariahle, not 1ittle vy, This gives us:

Local horizontal comppession factor =

2 '

-

t1ex) = wi/X

Local vertical compression factor =

. e 2
1/g'(y) = (téy) = /Y

Notice that these compression factors both vary between 1/4 and

1/9 when X and Y range over box 2; but when X and Y vary over box 20,
say: then (a) there {s much greater compression, and (b) it is mueh

closer te uni{form, since both factops remain almost constant, varying ‘
~betwean 1/400 and 1/441. Thus, wWe obtaln an answer to how the .
curvature of the subgraphs comes about, and aecondly, we learn why
the 3subgraphs c1osest to the corners of any bcx are so mych less
curved than the enes in the center, 8o much more falthtu! as “cop§es"
0f the baox=graphs themselves, L
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