

A006336


a(n) = a(n1) + a(n  1  number of even terms so far).
(Formerly M0684)


26



1, 2, 3, 5, 8, 11, 16, 21, 29, 40, 51, 67, 88, 109, 138, 167, 207, 258, 309, 376, 443, 531, 640, 749, 887, 1054, 1221, 1428, 1635, 1893, 2202, 2511, 2887, 3330, 3773, 4304, 4835, 5475, 6224, 6973, 7860, 8747, 9801, 11022, 12243, 13671, 15306, 16941
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Comments from T. D. Noe, Jul 27 2007: (Start) This is similar to A000123 and A005704, which both have a recursion a(n)=a(n1)+a([n/k]), where k is 2 and 3, respectively. Those sequences count "partitions of k*n into powers of k". For the present sequence, k=phi. Does A006336(n) count the partitions of n*phi into powers of phi?
Answering my own question: If the recursion starts with a(0)=1, then I think we obtain "number of partitions of n*phi into powers of phi" (see A131882).
Here we need negative powers of phi also: letting p=phi and q=1/phi, we have
n=0: 0*p = {} for 1 partition,
n=1: 1*p = p = 1+q for 2 partitions,
n=2: 2*p = p+p = 1+p+q = 1+1+q+q = p^2+q for 4 partitions, etc.
So the present sequence, which starts with a(1)=1, counts 1/2 of the "number of partitions of n*phi into powers of phi". (End)


LINKS

T. D. Noe and N. J. A. Sloane, Table of n, a(n) for n = 1..10000 [First 1000 terms from T. D. Noe]
Max Alekseyev, Proof of Paul Hanna's formula
D. R. Hofstadter, EtaLore [Cached copy, with permission]
D. R. Hofstadter, PiMu Sequences [Cached copy, with permission]
D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991


FORMULA

Comment from Paul D. Hanna, Jul 22 2007: It seems that A006336 can be generated by a rule using the golden ratio phi: a(n) = a(n1) + a([n/Phi]) for n>1 with a(1)=1 where phi = (sqrt(5)+1)/2, I.e. the number of even terms up to position n1 equals n1  [n/Phi] for n>1 where Phi = (sqrt(5)+1)/2. (This is true  see the Alekseyev link.)
a(n)=a(n1)+a(A060143(n)) for n>1; subsequence of A134409; A134408 and A134409 give first and second differences; A001950(n)=Min(m:A134409(m)=a(n)).  Reinhard Zumkeller, Oct 24 2007


MAPLE

# Maple code for first M terms of a(n) and A060144, from N. J. A. Sloane, Oct 25 2014
M:=100;
v[1]:=1; v[2]:=2; w[1]:=0; w[2]:=1;
for n from 3 to M do
v[n]:=v[n1]+v[n1w[n1]];
if v[n] mod 2 = 0 then w[n]:=w[n1]+1 else w[n]:=w[n1]; fi; od:
[seq(v[n], n=1..M)]; # A006336
[seq(w[n], n=1..M)]; # A060144 shifted


MATHEMATICA

a[n_Integer] := a[n] = Block[{c, k}, c = 0; k = 1; While[k < n, If[ EvenQ[ a[k] ], c++ ]; k++ ]; Return[a[n  1] + a[n  1  c] ] ]; a[1] = 1; a[2] = 2; Table[ a[n], {n, 0, 60} ]


PROG

(PARI) A006336(N=99) = local(a=vector(N, i, 1), e=0); for(n=2, #a, e+=0==(a[n]=a[n1]+a[n1e])%2); a \\ M. F. Hasler, Jul 23 2007
(Haskell)
a006336 n = a006336_list !! (n1)
a006336_list = 1 : h 2 1 0 where
h n last evens = x : h (n + 1) x (evens + 1  x `mod` 2) where
x = last + a006336 (n  1  evens)
 Reinhard Zumkeller, May 18 2011


CROSSREFS

Cf. A007604, A000123, A005704, A131882, A134408, A134409, A001950.
"Number of even terms so far" is A060144(n+1).
Sequence in context: A308823 A101018 A320593 * A175831 A070228 A173599
Adjacent sequences: A006333 A006334 A006335 * A006337 A006338 A006339


KEYWORD

nonn,easy,nice


AUTHOR

D. R. Hofstadter, Jul 15 1977


EXTENSIONS

More terms from Robert G. Wilson v, Mar 07 2001
Entry revised by N. J. A. Sloane, Oct 25 2014


STATUS

approved



