login
a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).
(Formerly M2094)
12

%I M2094 #76 Aug 02 2024 22:38:45

%S 1,2,16,192,2816,46592,835584,15876096,315031552,6466437120,

%T 136383037440,2941129850880,64614360416256,1442028424527872,

%U 32619677465182208,746569714888605696,17262927525017812992,402801642250415636480,9474719710174783733760,224477974671833337692160

%N a(n) = 4^n*(3*n)!/((n+1)!*(2*n+1)!).

%C Number of planar lattice walks of length 3n starting and ending at (0,0), remaining in the first quadrant and using only NE,W,S steps.

%C Equals row sums of triangle A140136. - _Michel Marcus_, Nov 16 2014

%C Number of linear extensions of the poset V x [n], where V is the 3-element poset with one least element and two incomparable elements: see Kreweras and Niederhausen (1981) and Hopkins and Rubey (2020) references. - _Noam Zeilberger_, May 28 2020

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H G. C. Greubel, <a href="/A006335/b006335.txt">Table of n, a(n) for n = 0..700</a>

%H Andrei Asinowski, Cyril Banderier, and Sarah J. Selkirk, <a href="https://www.mat.univie.ac.at/~slc/wpapers/FPSAC2023/30.pdf">From Kreweras to Gessel: A walk through patterns in the quarter plane</a>, Séminaire Lotharingien de Combinatoire, Proc. 35th Conf. Formal Power Series and Alg. Comb. (Davis, 2023) Vol. 89B, Art. #30.

%H Olivier Bernardi, <a href="https://hal.archives-ouvertes.fr/hal-00068433/document">Bijective counting of Kreweras walks and loopless triangulations</a>, Journal of Combinatorial Theory, Series A 114:5 (2007), 931-956.

%H M. Bousquet-Mélou, <a href="http://arXiv.org/abs/math.CO/0401067">Walks in the quarter plane: Kreweras' algebraic model</a>, arXiv:math/0401067 [math.CO], 2004-2006.

%H M. Bousquet-Mélou and M. Mishna, <a href="http://arxiv.org/abs/0810.4387">Walks with small steps in the quarter plane</a>, arXiv:0810.4387 [math.CO], 2008.

%H Sam Hopkins and Martin Rubey, <a href="https://arxiv.org/abs/2005.14031">Promotion of Kreweras words</a>, arXiv:2005.14031 [math.CO], 2020.

%H G. Kreweras, <a href="http://www.numdam.org/numdam-bin/item?id=BURO_1965__6__9_0">Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers</a>, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, 6 (1965), circa p. 82.

%H G. Kreweras and H. Niederhausen, <a href="http://dx.doi.org/10.1016/S0195-6698(81)80020-0">Solution of an enumerative problem connected with lattice paths</a>, European J. Combin., 2 (1981), 55-60.

%F G.f.: (1/(12*x)) * (hypergeom([ -2/3, -1/3],[1/2],27*x)-1). - _Mark van Hoeij_, Nov 02 2009

%F a(n+1) = 6*(3*n+2)*(3*n+1)*a(n)/((2+n)*(2*n+3)). - _Robert Israel_, Nov 17 2014

%F a(n) ~ 3^(3*n + 1/2) / (4*sqrt(Pi)*n^(5/2)). - _Vaclav Kotesovec_, Mar 26 2016

%F E.g.f.: 2F2(1/3,2/3; 3/2,2; 27*x). - _Ilya Gutkovskiy_, Jan 25 2017

%e G.f. = 1 + 2*x + 16*x^2 + 192*x^3 + 2816*x^4+ 46592*x^5 + 835584*x^6 + ...

%p A006335:=n->4^n*(3*n)!/((n+1)!*(2*n+1)!): seq(A006335(n), n=0..20); # _Wesley Ivan Hurt_, Nov 16 2014

%t aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[i, -1 + j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 3 n], {n, 0, 25}] (* _Manuel Kauers_, Nov 18 2008 *)

%t Table[(4^n (3 n)! / ((n + 1)! (2 n + 1)!)), {n, 0, 200}] (* _Vincenzo Librandi_, Nov 17 2014 *)

%o (PARI) {a(n) = if( n<0, 0, 4^n * (3*n)! / ((n+1)! * (2*n+1)!))}; /* _Michael Somos_, Jan 23 2003 */

%o (Magma) [4^n*Factorial(3*n)/(Factorial(n+1)*Factorial(2*n+1)) : n in [0..20]]; // _Wesley Ivan Hurt_, Nov 16 2014

%o (Sage)

%o def a(n):

%o return (4**n * binomial(3 * n, 2 * n)) // ((n + 1) * (2 * n + 1))

%o # _F. Chapoton_, Jun 01 2020

%Y Equals 2^(n-1) * A000309(n-1) for n>1.

%Y Cf. A098272. First row of array A098273.

%Y Column of A176129, A214631, A214722, A340591.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _N. J. A. Sloane_, Dec 20 2008 at the suggestion of _R. J. Mathar_