OFFSET
2,1
COMMENTS
Conjecture: a(n) = A008837(n) = p*(p-1)/2 = Sum_{k=0..p-1} mod(k^3, p) where p = prime(n). - Michael Somos, Feb 17 2020
REFERENCES
D. H. and Emma Lehmer, Cyclotomy for nonsquarefree moduli, pp. 276-300 of Analytic Number Theory (Philadelphia 1980), Lect. Notes Math. 899 (1981).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 243.
LINKS
FORMULA
For an odd prime p, let g be a primitive root of p^2, q=g^p, and zeta=exp(2*pi*i/p^2). Define h(p,k) = Sum_{j=0..p-2} zeta^((q+k*p)*q^j) and a polynomial f(p,x) = Product_{k=0..p-1} (x-h(p,k)). Finally, a(n) = -[x^(p-2)] f(p,x) where p = A000040(n) is the n-th prime. - Sean A. Irvine, Mar 07 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms and offset corrected by Sean A. Irvine, Mar 07 2017
STATUS
approved