login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006307 Number of ways writing 2^n as unordered sums of 2 primes.
(Formerly M0344)
8
0, 0, 1, 1, 2, 2, 5, 3, 8, 11, 22, 25, 53, 76, 151, 244, 435, 749, 1314, 2367, 4239, 7471, 13705, 24928, 45746, 83467, 153850, 283746, 525236, 975685, 1817111, 3390038, 6341424, 11891654, 22336060, 42034097, 79287664, 149711134, 283277225, 536710100, 1018369893 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

REFERENCES

Bohman, Jan and Froberg, Carl-Erik; Numerical results on the Goldbach conjecture. Nordisk Tidskr. Informationsbehandling (BIT) 15 (1975), no. 3, 239-243.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..40.

Index entries for sequences related to Goldbach conjecture

FORMULA

a(n) = A061358(2^n).

EXAMPLE

n = 5: 2^5 = 32 = 3+29 = 13+19 so a(5) = 2.

MAPLE

a:=proc(n) local c, k; c:=0: for k from 1 to floor((n-1)/2) do if isprime(2*k+1)=true and isprime(2*n-2*k-1)=true then c:=c+1 else c:=c fi od end: 0, 0, 1, seq(a(2*2^n), n=1..15); # Emeric Deutsch, Sep 22 2004

PROG

(PARI) a(n)=my(N=2^n, s); forprime(q=2, N\2, s+=isprime(N-q)); s \\ Charles R Greathouse IV, Mar 02 2015

CROSSREFS

Cf. A061358, A062602, A062610.

Sequence in context: A045893 A071939 A075545 * A152991 A163298 A133440

Adjacent sequences:  A006304 A006305 A006306 * A006308 A006309 A006310

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from David W. Wilson

a(28)-a(35) from Ray Chandler, Feb 21 2004

a(36)=79287664 and a(37)=149711134 from Ray Chandler, Apr 10 2005

a(38)-a(40) from Russ Cox, Nov 04 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 04:40 EDT 2019. Contains 325189 sequences. (Running on oeis4.)