%I M5341 #30 Dec 14 2017 21:20:54
%S 70,1720,24164,256116,2278660,17970784,129726760,875029804,5593305476,
%T 34225196720,201976335288,1156128848680,6447533938280,35155923872640,
%U 187959014565840,987658610225052,5110652802256260,26084524995672080,131501187454625560,655590388845975000,3235463376771463288,15820770680078552000,76708503479715247920,369046200766330733880,1762793459781859039080,8364468224596427692896,39445646133672676352560,184956513528952419546448,862615498961026097997392,4003067488703222112053760,18489846573354278755829152,85028133934182275077421180,389398354121840111751946628,1776360539933013004774353872,8073622060225813990245976280,36567311475673299914222851832
%N Number of genus 1 rooted maps with 3 faces with n vertices.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
%H Vincenzo Librandi, <a href="/A006296/b006296.txt">Table of n, a(n) for n = 4..1000</a>
%H T. R. S. Walsh and A. B. Lehman, <a href="http://dx.doi.org/10.1016/0095-8956(72)90056-1">Counting rooted maps by genus</a>, J. Comb. Thy B13 (1972), 122-141 and 192-218.
%H <a href="/A007401/a007401_1.pdf">Notes</a>
%F G.f.: x(1-sqrt(1-4*x))(45+152*x+(25+8*x)sqrt(1-4*x))/(2(1-4*x)^(11/2)). - _Sean A. Irvine_, Nov 14 2010
%t Rest[CoefficientList[Series[(1 - Sqrt[1 - 4 x]) (45 + 152 x + (25 + 8 x) Sqrt[1 - 4 x]) / (2 (1 - 4 x)^(11 / 2)), {x, 0, 40}], x]] (* _Vincenzo Librandi_, Jun 06 2017 *)
%o (PARI)
%o A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
%o A006296_ser(N) = {
%o my(y = A000108_ser(N+1));
%o -2*y*(y-1)^4*(10*y^3 + 97*y^2 - 64*y - 8)/(y-2)^11;
%o };
%o Vec(A006296_ser(36)) \\ _Gheorghe Coserea_, Jun 04 2017
%Y Rooted maps of genus 1 with n edges and f faces for 1<=f<=10: A002802(with offset 2) f=1, A006295 f=2, this sequence, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
%Y Column 3 of A269921, column g=1 of A270407.
%K nonn
%O 4,1
%A _N. J. A. Sloane_.
%E More terms from _Sean A. Irvine_, Nov 14 2010