This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006237 Complexity of tensor sum of n graphs; or spanning trees on n-cube. (Formerly M3725) 2
 1, 1, 4, 384, 42467328, 20776019874734407680, 1657509127047778993870601546036901052416000000, 153850844349814660487100539994381178281567942393055761257560677644718869248475136000000000000000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.6.10. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..10 Aaron R. Bagheri, Classifying the Jacobian Groups of Adinkras, (2017), HMC Senior Theses. Frank Harary, John P. Hayes, and Horng-Jyh Wu, A survey of the theory of hypercube graphs, Comput. Math. Appl., 15(4) (1988), 277-289. D. E. Knuth, Letter to N. J. A. Sloane, Oct. 1994 Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4. Eric Weisstein's World of Mathematics, Hypercube Graph Eric Weisstein's World of Mathematics, Spanning Tree FORMULA a(n) = 2^(2^n-1-n)*1^binomial(n, 1)*2^binomial(n, 2)*...*n^binomial(n, n). MATHEMATICA Table[2^(2^n - 1 - n) Product[k^Binomial[n, k], {k, n}], {n, 0, 10}] PROG (PARI) a(n)=2^(2^n-n-1)*prod(k=1, n, k^binomial(n, k)) CROSSREFS Cf. A006235. Sequence in context: A279525 A003753 A193130 * A181044 A116031 A115049 Adjacent sequences:  A006234 A006235 A006236 * A006238 A006239 A006240 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS Description expanded July 1995 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 19 10:44 EST 2018. Contains 317349 sequences. (Running on oeis4.)