login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006201 Number of colorings of labeled graphs on n nodes using exactly 3 colors, divided by 48.
(Formerly M5167)
5
0, 0, 1, 24, 640, 24000, 1367296, 122056704, 17282252800, 3897054412800, 1400795928395776, 802530102499344384, 732523556206878392320, 1064849635418836398243840, 2464403435614136308036796416 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Equals 1/48*A213442. - Peter Bala, Apr 12 2013

REFERENCES

F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 18, table 1.5.1, column 3 (divided by 8).

R. C. Read, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..75

R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410—414.

R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976

FORMULA

Let E(x) = sum {n >= 0} x^n/(n!*2^C(n,2)) = 1 + x + x^2/(2!*2) + x^3/(3!*2^3) + x^4/(4!*2^6) + .... Then a generating function is 1/48*(E(x) - 1)^3 = x^3/(3!*2^3) + 24*x^4/(4!*2^6) + 640*x^6/(5!*2^10) + ... (see Read). - Peter Bala, Apr 12 2013

MATHEMATICA

F2[n_] := Sum[Binomial[n, r]*2^(r*(n-r)), {r, 1, n-1}]; F3[n_] := Sum[Binomial[n, r]*2^(r*(n-r))*F2[r], {r, 1, n-1}]; a[n_] := F3[n]/48; Table[a[n], {n, 1, 15}] (* Jean-François Alcover, Mar 06 2014, after Maple code in A213442 *)

CROSSREFS

Cf. A000683. A diagonal of A058843. A213442.

Sequence in context: A182611 A126153 A002553 * A118051 A208441 A231449

Adjacent sequences:  A006198 A006199 A006200 * A006202 A006203 A006204

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic, Feb 03 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 17 18:55 EST 2018. Contains 317276 sequences. (Running on oeis4.)