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A LATTICE PATH PROBLEM

H.L. Abbott and D. Hanson

1. Introduction.

The following problem was brought to our attention a few years ago

by Pavol Hell. A certain rectangular voting district, m miles by

n miles, is to be divided into two connected constituencies, where the

division 1s to take place only along lines determined by the mileage

markers. In how many ways can this be done? We consider the following
problem which offers a partial solution to the above problem. Consider

the integer lattice Imn = {(x,y): 0$x<m, 0<y<n, x,yintegers}.

Let f(m,n) denote the number of lattice paths on Imn from (0,0)
to (m,n) that have the property that no vertex occurs more than once

on any glven path. We shall call such a path a non-intersecting path.

It is trivial that £(m,0) = 1 and it is easy to check that f(m,1) = 2"

for allm 2> 1.
In general, the problem of evaluating f(m,n) appears to be
difficult. In this paper we evaluate £(m,2) and obtain bounds for

f(m,n) for n 2 3.

2. A Matrixz Setting for the Problem.
Consider any non-intersecting path from (0,0) to (m,n). Label
each unit square inside Imn that lies to the "right'" of the path by

a 1 and those that lie to the "left" by a 0. This labelling then
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‘defines a one . one correspondence between the set of all non-intersecting

paths on Imn and a subset of the set of 0-1 nxm matrices. For

example we'have the following corrgspondence;
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An nxm 0-1 matrix will be called admissible if it corresponds to a
non-intersecting path on Iﬁn and inadmissible otherwise. Since the
total number of nxm 0-1 matrices is 2™ we have the following

trivial upper bound

(6} f(m,n) < 2™,

We say that two entries aij and ae of an admissible matrix
are O-adjagent (respectively, l-adjacent) if and only if 1 = k and
[§-2] =1 or §=2 and |1 -k| =1 and a
aij =a, - 1). Further, we say that aij and a , are O-path

(respectively, l-path) adjacent if there is a sequence of entries

aij""’akl each of which is O-adjacent (respectively, l-adjacent) to
its neighbours in the sequence. For convenience, we agree that a zero

(one) entry is O-path (l-path) adjacent to itself.

The following two observations are immediate:

[ A

13 =8, = 0 (respectively,

37 A

(a) Any zero entry of an admissible matrix is O-path adjacent to some
entry in the first row or first column.
(b) Any one entry of an admissible matrix is l-path adjacent to some
entry in the last row or last columm.
We now define for each =n 2 2, 2n*29 matrices B , B and B .
n’ —n n
Associate with a column of 0-1 matrix, reading from top to bottom, a
binary number in the natural way. The matrix Bn = [bij]’

0s4s2%1, 053 <2%1 1s now defined as follows:

b1j = 1 if every admissible nx(m-1) matrix whose (m~1)st column
is given by the binary representation of j can be extended to an
admissible n*m matrix by adjoining an mth column given by the binary
representation of 1.

b,, = 0 if every admissible nx(m-1) matrix whose (m-1)st column

1ij
is given by the binary representation of j yields an inadmissible
nxm matrix when we adjoin an mth column given by the binary
representation of 1.

bij = * (unspecified) 1if there are admissible nXm matrices
whose mth and (m-1)st columns are given by the binary representation
of i and j respectively, but which are such that deleting the mth
column does not result in an admissible nxX(m-1) matrix.

The matrix Bn 18 thus well defined for every n 2 2. En is the

matrix obtained from Bn by replacing each * entry by 0 and ﬁn
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ig obtained by replacing each * entry by 1. From observations (c), (d), (e) and (f) we have that Bz, as

defined in Section 2, 1s given by
3. Evaluation of f(m,2).

The following additional observations follow easily from observations

1 1 % 1
(a) and (b) in Section 2. A = [a, ] denotes an n*m matrix and v - 11001
nm ij 32 .
1 0 1 0
we suppose m 2 2 throughout.
1 1 1 1
(c) Any admissible A can.-be extended to an admissible A by
2,m-1 2,m
adjoining an mth column (i). LEMMA 1. For nf 2 4,
(d) Any admissible A2 o1 whose (m-1)st colummn is either (g) or ((l]) f(m,2) = 4f(m-1,2)-3f(m-2,2)+2f (m-3,2)+f(m-4,2).
b
can be extended to an admissible AZ by adjoining an mth column o
1 > Proof. Let ay be the number of admissible matrices A, whose
Q) - ekl
0 1 last column is given by the binary representation of j. Then, since
(e) Any admissible A2 1 whose (m~1l)st column is not (0) can be ol
. 1= f(m,2) = ay , we must show, for m 2 3,
extended to an admissible A by adjoining an mth column which - _ _
2,m ) 2= 4% 3" l+Zanl 2,23,
0 0 : 3 373 3 3
is either (0) or (1).

(£) If A, . is inadmissible but can be extended to an admissible It follows from observations (c), (d), (e) and (f) above that
’ m-2 m-1
A2,m' then it is inadmissible because 3 m-1 " 0 and there is a‘gl - al(l)l-l+alil—1+al;1-1+ ) a; _ aE—1+at;—1+ 7 a§
1=1 i=1
no O-path adjacent entry a; P’ 1 <p<n or a O-path adjacent
entry aq,l’ 1 < q < 2. That is, the only inadmissible Az,m—l 3) aull _ ar(l)l—l_l_alit—l_l_ax;—l
matrices that can be extended to an admissible AZ a 2Te some of
1. ’ m m-1, m-1
those whose (m-1)st column is (0), and these can be extended by a, = 3, +82
adjoining an mth colum .(g). Further, all such matrices must o am_1+am—l -1 m-1

a a
3 (¢} 1 2
hdve as their last k+1 columns, (i) followed by k columns (3) 3

and the first m-k-2 columns must form an admissible A2 m-k-2 for ; We have, by repeatedly appealing to the various equations given by (3),

some k, 1 €k < m-2. i



1l , m 1, -2 m-3
3 —4a3+3 3 -2a a3
w1l , m-2 m-3
= a0 3a +3a 3 —a3
m- 1 m m- 1 o0 1 m -1 m-~ 1 S0 -1
= (ap #+ 1+i£a)+( a) ) + (ay +a, )
- 3(am -1 T 1+a; 1 at 1) + 3a Zag - a;_3
w1 . w1, w1, w2 w3521
= -a; —2a2 +2a3 -2a3 -a, + 2 ag
i=1
m-2, m- 2 S0 2 m—2
= -(ay "ta; * )-2( +a, )
-2
-2, m-2, m-2, m-2 -2 w3, 5.1
+2(a 1 +a2 +a, ) - Za3 - a, + Z ay
i=1
-3
m-2, m-2 n-3." i
= -a  +ta -a, + z a
0 1 3 7,5
_ m-3, m 3 m-3, m- -3, m-3
= -(a, a1+2a)+( ta, Hag )
m-3
-a, + Z a
3 7,5
= 0, as required.
We 1list the first few values of a:, aT, ag and a? = f(m-1,2) in
the table below:
n m 2 m 2
2o 1 3 3
1 1 1 1 1
2 3 3 2 4 Y
3 11 10 5 12 x\
4 38 33 16 38 0
5 126 109 54 125 —!
6 415 360 180 414 —|
7 1369 1189 595 1369 ©
8 4521 3927 1964 4522 11
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It now follows immediately from the lemma that the following

theorem holds.

THEOREM 1. For m 20,
m Bm
fmy2) = (4+/1?)( 3+/1—3) /—-4 3-/?) L 2= -1,/‘ _) -
2/13 2 o132 2/3 2 2
Remark: Theorem 1 shows that f(m,2) ~ c(1.817...)2m for some constant

c. It also follows from the lemma that f£(m,2) has the following

rational generating function

l-x2 t m
5 A z f(m,2)x .
1-4x+3x -2x-x m=0

A similar approach may be used to find the number of non-intersecting

paths in I other than (m,2). The

m,2 m,2

complexity of the solution will vary with the choice of the terminal point.

from (0,0) to a point of I

For example, we count the number of non-intersecting paths, say g(m),

from (0,0) to (0,2). The matrix analagous to B is

2

O
- o= O
= © o o

1
1
0
1

Thus, corresponding to (3), defining the a? in the natural way, we have



am am-—l am-l am—l
0 0 1 2

m m-1, m-1
al a0 +a1
m m-1, m-1
a2 = ao +a2

a111 _ am-l +am—1 m-1, m-1
3% T T8 T3 o

from which it follows that, for m 2 3, keeping in mind that a‘;ﬂ-l = g(m),

g(m) = 3g(m-1)-g(m-2)-g(m-3).

From this it follows that g(m) has the rational generating function

14x _ E m
— 5 3= g (m)x
1-3x+x +x m=0

and for m 2 0

g@ = -1 + C22 ™ - &2 -/,
2Y2 2/2

4. The General Case - Upper and Lower Bounds.

The two examples detailed in Section 3 make it clear that the
unspecified entries, (*), of Bn complicate the problem of determining,
for fixed n, a recurrence relation for f(m,n). We therefore concentrate
on the problem of obtaining upper and lower bounds.

Let a(m,n,j) denote the number of admissible matrices Anm whose
last column is given by the binary representation of j, so that

m -

a(m,2,j) = 2y

and a(m+l,n,2n—l) = f(m,n).Let En = [I_J_ij] and -B-n = [bij]'
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may be used to define sequences _a_l_:.u,n,j) and

The matrices En and Bn
a(m,n,j) as follows:
2"
a(m,n,j) = kzo g(m—l,n,k)gjk
(4) 20
E(m,n,j) = k-);o Z(m—l,n,k)gjk

where a(l,n,j) = a(l,n,j) =1 for all n and all j, 0 £ j < %1, 1If

we further define f(m,n) = g_(m—l,n,Zn-l) and f(m,n) = ;(m—l,n,Zn-l) we

then have

(5) f(m,n) $ f(m,n) < £(m,n),
and
THEOREM 2. For m 2 2,
f(myn) = sum of the entries in ﬂ—l

Ff(m,n) = sum of the entries in ﬁ;:_l.

Proof. It will suffice to prove the result for f(m,n).
Let e = [a(m,n,0) ,g(m,n,l),...,§_(m,n,2n-l)]. It follows from (4)
that for m 2 2
- T
a(m,n,j) = e 1 [row j of §n]
and hence that

T _ _ . opTyo-1
B = ...=¢ (—Bn) .

Since e = [1,1,...,1] we find that
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( £(m,n) = aGutl,n, 2" h)

2"1

= Z a(m,n,j) = sum of the entries of e

3=0 .
= gum of the entries of Bm_1
Zn
as asserted.
Letting e = e = [1,1,...,1] we then have the following:
. COROLLARY.

1 T

o1 . eT < f(m,n) < e - ﬁ:— v e .

e - En
In order to estimate the sum of the entries of powers of a 0-1
matrix we appeal to the following classical theorem of Perron and
Frobenius. (See for example [1], Chapter 1).
THEOREM. (Perron-Frobenius). If A <is a primitive 0-1 matriz there
i8 a unique eigenvalue A of A with the largest absolute value.

X 1ig a positive real number and satisfies

where y 1is the eigenvector corresponding to X.
It follows from this theorem that

(6) e . Ak . e'r ~e - ylk as ko=,

Thus, if the matrices gn and En are both primitive we obtain, via

corollary 1, the following bounds:

c 2" < f(m,n) < c A
—“rn n'n
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5 .
where An and a are, respectively, the largest eigenvalu(. —Bn

and En and <, and En are constants depending solely on n. (Note

n
that b, ;. 1= 0,1,...,2°-1, b ,1=0,1,...,2"1, and b are

2"-1,9 1,2"-1
all 1's and therefore, for all n 21, B, and in are indeed

primitive matrices.)

In the case n = 3 one may verify that

el el el el el el
HORFMEORR
HHOOKMMO *
HOOOHKOHKHKH
OO % %
HOHMHOO *» *
H OO ¥
HOOOKHOKR

W

Thus B, and have the characteristic polynomials

B, = A2 (8-andr19at18a 3 k2024820
and
00 = Ao a8 sen 1503 62 %4 2041)
respectively. One then finds that the largest eigenvalues of 53 and
§3 are 1 = 4.78183... and i3= 5.56165... respectively and therefore
3m 3m

c5(1.684...)7" < £(m,3) < ey (1772,

It is clear that the above method may be used in principle to
estimate f(m,n) for n > 3. However, calculation of the associated
characteristic polynomials becomes an extremely tedious task. One may,

however, use the following alternate approach: It follows from (6)
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that 1f A r primitive 0-1 matrix then

1im e-AFéeT = 2
(€)) koo k-1 T :
e-A .e

Thus A may be approximated by calculating successive ratios of sums

of entries of the powers of A. Of course it is difficult to measure

the rate of convergence to A. However our calculations suggest that

in the case n =4

4m

e, (1.661...) bm

< f(m,4) < E4(1.757...)

We do not give all of the details here but we record the matrix 84 8o

that the interested reader may verify matters for himself.
— —

[ el il o
FOHHERHORHMOKNKHRORH
FHOOHHO *HPOOKRRO %
HFOOOHOHKRHOOOROKKH
HHHDOOOORKHHROO * *
HOHHOOOOHORHOO % %
FHOHOOOOHROHKKRO *
HFODOOOOOOHOOOKORH
MR HRERHEHHRHHOOOQ ¥ % % %
HOHHHOKRHOOOO %O % *
HHOOHHO 00O OO0 %O %
HOOOROHHOOOOOO * %
H OO RKHERMHOO * %k
HOHRHOOKHHOHHOO % %
FHOHOOORMKHEHOKHMO *
HooOoOOOOOROOOHORHM

We now prove a theorem which enables us to obtain estimates of

f(m,n) in terms of f(m,k), k < n.
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THEOREM 3. Let t 20, k21 and let n= 2t(k+1)+k. Then r
flmn) = fim k)
Proof. Divide the integer lattice I . into 2t+l horizontal rectangles °

of width k+l. That this is possible follows from the-

Lpolyseeeslyen

definition of n in terms of t and k. In fact we have, for
j=1,2,...,2t+1

Ij = {(x,y): 0‘ < x <m, (kH1)(J-1) <y < (k1) (3-1)+k}.

For j odd 1let P

3
(m, (k+1) (3-1))

i denote any of the f(m,k) non-intersecting paths
in Ij from (0,(k+1)(j-1)) to (m,(k+l)(j-1)+k) and for j even let
P. denote any one of the f(m,k) non-intersecting paths in Ij from

to (0, (k+l) (j-1)+k). These paths may then be juxtaposed

to give a non-intersecting path in Imn' The number of non-intersecting

paths in Imn is thus at least f(m,k)2t+l.

COROLLARY. For each fized n, 7
;ﬁ: fﬁw,n)mn = Bn exists.
1 1

of. 1lim inf mn lim =Y.
Proof- 1or o = " If g ()™ < tlH:up fmm™ =Y Let £ > 0
and let k be such that

1 - L
£G,m > y-e and  (y-e) > y-ze.

Henceforth k is fixed. Let m be given and let t be defined by

2t (k+1)+k<m&2 (t+1) (k+1)+k. We may suppose that m 1s so large that
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:>k2. Then, by Theorem 3 we have
£(a,n) = £(a,m) > £(n,2e(kl)H) 2 £(a, k)2
- f(k,n)hﬂ s (Y_e)b(2t+1)_
Thus 1 k(2t+1) L1
W s B @™ 2 () T > () k> y-ze.
from which it follows that a = vy as required. 1

In a similar manner, it follows that B8 = ;iz f(m,m)ln exists.

In fact, it follows easily from Theorem 3 that

for all k. Our calculations, based on (7), indicate that 86 > 1.653...
and hence that .
2
£(m,m) > c(1.583...)" .
Finally, we indicate how upper bounds for f(m,n) for n < m may be

obtained. Note that of the 16 ways of partitioning the unit squares of

12 2 into two sets, at most 14 can correspond to portioms of non-intersecting
’

lattice paths. Specifically, the patterns [2 3] and [é 2] are not
possible. Thus, if m and n are both even, say m = 2r, n = 28,

£(m,n) < 14°° ~ (1.935...)™

and a slightly weaker bound follows if m and n are not both even.

Similarly, one may show that of the 216 = 65536 ways of partitioning

the unit squares of I4 4 into two sets, at most 22662 can correspond

to portions of non-intersecting paths. Then, if m and n (_ both

divisible by 4 one has
mn

f(m,n) < (22662)1° ~ (1.872...0™

with slightly weaker results in the remaining cases. No doubt further

such improvements are possible.

5. Some Open Questions.
Clearly there are a number of unanswered questions which remain. Ve
summarize some of these.

1. Evaluate Bn for n 23 and evaluate B.

1
2. Is the sequence f(m,n)mn decreasing 1n both m and n? The first
1
few values of f(m,n) and f(m,n)mn are given in the following

1

tables. If f(m,n)mn is decreasing, it would follow that

£(m,n) < c(1.758...)™" for m 25, n 2 4.

2 4 8 16 32 64 128 256
12 38 125 414 1369 4522 14934
184 976 5382 29739
8512 79384

s W=
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2 2 2 2 2 2 2 2

1.785 1.775 1.773 1.772
1.760 1.758

N~ W N M

3. For even n, let h(n) denote the number of non-intersecting paths

1
2
in Inn which are Hamiltonian. We can show that a = Lim h(n)n

n-e

W=
[

exists and that 2~ < o < 124. We believe a < B.
2
4, For k even, 2n < k < n'+2n let fk(n) be the number of non-
intersecting paths from (0,0) to (n,n) which have exactly k
edges, so that

n2+2n

£(a,n) = } £ ().
N k=2n
k even

_ ,2n
fzn(u) = ( n) is the classical ballot problem result. The evaluation

of fk(n) for k > 2n appears difficult.
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A BALANCED HYPERGRAPH DEFINED BY CERTAIN SUBTREES OF A TREE
by
Rick Giles

ABSTRACT
Let T be a tree with vertex set V = {vl,vz,...,vp}.
For each i, 1 < 1 <p, let a be a nonnegative integer
and define Ei = {veV:d(vi,v) < ai}. We show that the
hypergraph (V,E), where E = {El’EZ""’Ep}’ is balanced.

This result generalizes two previously known min-max

relations for this hypergraph.

Let T be a tree with vertex set V = {vl,vz,...,vp}. For each

1, 1 < i < p, let a; be a nonnegative integer and define

E = {veV: d(vi,v) < ai}. Thus each Ei

.,(v_,a )} and assoclate a
p P

"centred" at vy Let RE{(vl,al),(vz,az),..

hypergraph
ypergraph Hy o P

hypergraph terms we will use can be found in Berge [2].

Min-max theorems for HT,R have been obtained in [3] and [5]. One
result from [3] implies that the maximum cardinality of matching in
HT, is equal to the minimum size of a transversal of HT,R' The main
result of [5] is that the maximum cardinality of a strqngly stable set

of vertices of HT R is equal to the minimum size of a cover in HT R
’ t]

These min-max results are also comsequences of a more general property

of HT R
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is the vertex set of a subtree of T

= (V,E) with T and R, where E = {EI,EZ,...,E }. The



