The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006166 a(0)=0, a(1)=a(2)=1; for n>=1, a(3n+2)=2a(n+1)+a(n), a(3n+1)=a(n+1)+2a(n), a(3n)=3a(n). (Formerly M2270) 2

%I M2270

%S 0,1,1,3,3,3,3,5,7,9,9,9,9,9,9,9,9,9,9,11,13,15,17,19,21,23,25,27,27,

%T 27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,27,

%U 27,27,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69

%N a(0)=0, a(1)=a(2)=1; for n>=1, a(3n+2)=2a(n+1)+a(n), a(3n+1)=a(n+1)+2a(n), a(3n)=3a(n).

%D J.-P. Allouche and J. Shallit, The ring of k-regular sequences, II, Theoret. Computer Sci., 307 (2003), 3-29.

%D J. Arkin, D. C. Arney, L. S. Dewald and W. E. Ebel, Jr., Families of recursive sequences, J. Rec. Math., 22 (No. 22, 1990), 85-94.

%D Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585

%D vN. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H J.-P. Allouche and J. Shallit, <a href="http://www.math.jussieu.fr/~allouche/kreg2.ps">The Ring of k-regular Sequences, II</a>

%Y a(n) + n = A003605(n).

%K nonn,easy

%O 0,4

%A _N. J. A. Sloane_.

%E More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 28 2003

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 18 09:15 EST 2020. Contains 332011 sequences. (Running on oeis4.)