login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006152 Exponential generating function x*exp(x/(1-x)).
(Formerly M1939)
5
1, 2, 9, 52, 365, 3006, 28357, 301064, 3549177, 45965530, 648352001, 9888877692, 162112109029, 2841669616982, 53025262866045, 1049180850990736, 21937381717388657, 483239096122434354, 11184035897992673017 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) is the number of labeled rooted trees with every non-root vertex of degree 1 or 2. - Geoffrey Critzer, May 21 2012.

Total number of unit length lists in all sets of lists, cf. A000262. - Alois P. Heinz, May 10 2016

REFERENCES

Getu, S.; Shapiro, L. W.; Combinatorial view of the composition of functions. Ars Combin. 10 (1980), 131-145.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..200

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 156

FORMULA

a(n) = 2*(n-1)*a(n-1)-(n^2-5*n+5)*a(n-2)-(n-4)*(n-2)*a(n-3). - Vaclav Kotesovec, Oct 05 2012

a(n) ~ n^(n-1/4)*exp^(2*sqrt(n)-n-1/2)/sqrt(2). - Vaclav Kotesovec, Oct 05 2012

a(n) = A320264(n+1,n). - Alois P. Heinz, Oct 08 2018

MATHEMATICA

nn = 17; a = x/(1 - x);

Range[0, nn]! CoefficientList[Series[x Exp[a], {x, 0, nn}], x]  (* Geoffrey Critzer, May 21 2012 *)

PROG

(PARI) a(n)=n!*polcoeff(x*exp(x/(1-x)+O(x^n)), n)

CROSSREFS

Cf. A006152(n)=n*A000262(n-1).

Cf. A000262, A320264.

Sequence in context: A069271 A305987 A231494 * A143508 A052882 A248440

Adjacent sequences:  A006149 A006150 A006151 * A006153 A006154 A006155

KEYWORD

nonn,easy

AUTHOR

Simon Plouffe

EXTENSIONS

More terms from Michael Somos, Jun 07 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 14:47 EDT 2019. Contains 328114 sequences. (Running on oeis4.)