%I M4314 #25 Jun 10 2018 11:47:21
%S 1,6,806,2558556,200525284806,391901483074853556,
%T 19138263752352528498478556,23362736428829868448189697999416056,
%U 712977784594148279816735342927316866304884806,543959438081999965602054955428186322207689611643379103556
%N Gaussian binomial coefficient [ 2n,n ] for q=5.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H Robert Israel, <a href="/A006114/b006114.txt">Table of n, a(n) for n = 0..36</a>
%H M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
%H <a href="/index/Ga#Gaussian_binomial_coefficients">Index entries related to Gaussian binomial coefficients</a>
%p with(QDifferenceEquations):
%p seq(eval(QSimpComb(QBinomial(2*n,n,q)),q=5), n=0..12); # _Robert Israel_, Feb 01 2018
%t Table[QBinomial[2n,n,5],{n,0,10}] (* _Harvey P. Dale_, Jun 10 2018 *)
%K nonn
%O 0,2
%A _N. J. A. Sloane_