login
Gaussian binomial coefficient [ n,5 ] for q = 2.
(Formerly M5327)
3

%I M5327 #53 Sep 08 2022 08:44:34

%S 1,63,2667,97155,3309747,109221651,3548836819,114429029715,

%T 3675639930963,117843461817939,3774561792168531,120843139740969555,

%U 3867895279362300499,123787287537281350227,3961427432158861458003,126769425631762997934675,4056681585917103881615955,129814770207420913565727315

%N Gaussian binomial coefficient [ n,5 ] for q = 2.

%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.

%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.

%H Vincenzo Librandi, <a href="/A006110/b006110.txt">Table of n, a(n) for n = 5..200</a>

%H Simon Plouffe, <a href="https://arxiv.org/abs/0911.4975">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.

%H Simon Plouffe, <a href="/A000051/a000051_2.pdf">1031 Generating Functions</a>, Appendix to Thesis, Montreal, 1992

%H M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (63,-1302,11160,-41664,64512,-32768).

%F a(n+4) = (1024*32^n-1984*16^n+1240*8^n-310*4^n+31*2^n-1)/9765. - _James R. Buddenhagen_, Dec 14 2003

%F G.f.: x^5/((1-x)*(1-2*x)*(1-4*x)*(1-8*x)*(1-16*x)*(1-32*x)). - _Vincenzo Librandi_, Aug 07 2016

%F a(n) = Product_{i=1..5} (2^(n-i+1)-1)/(2^i-1), by definition. - _Vincenzo Librandi_, Aug 06 2016

%F a(n) = (2^n-16)*(2^n-8)*(2^n-4)*(2^n-2)*(2^n-1)/9999360. - _Robert Israel_, Feb 01 2018

%p seq((1024*32^n-1984*16^n+1240*8^n-310*4^n+31*2^n-1)/9765,n=1..20);

%p A006110:=1/(z-1)/(4*z-1)/(2*z-1)/(8*z-1)/(16*z-1)/(32*z-1); # _Simon Plouffe_ in his 1992 dissertation with offset 0

%t Table[QBinomial[n, 5, 2], {n, 5, 20}] (* _Vincenzo Librandi_, Aug 07 2016 *)

%o (Sage) [gaussian_binomial(n,5,2) for n in range(5,18)] # _Zerinvary Lajos_, May 24 2009

%o (Magma) r:=5; q:=2; [&*[(1-q^(n-i+1))/(1-q^i): i in [1..r]]: n in [r..20]]; // _Vincenzo Librandi_, Aug 07 2016

%Y Cf. A006097.

%K nonn,easy

%O 5,2

%A _N. J. A. Sloane_