%I M3472 #20 Feb 02 2018 02:42:13
%S 1,1,4,13,130,1210,33880,925771,75913222,6174066262,1506472167928,
%T 366573514642546,267598665689058580,195168545232713290660,
%U 427028776969176679964080,934054234760012359481199283,6129263888495201102915629695046
%N Gaussian binomial coefficient [ n,n/2 ] for q=3.
%D J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
%D I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
%H T. D. Noe, <a href="/A006104/b006104.txt">Table of n, a(n) for n=0..50</a>
%H M. Sved, <a href="/A006095/a006095.pdf">Gaussians and binomials</a>, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
%t Table[QBinomial[n,Floor[n/2],3],{n,0,20}] (* _Harvey P. Dale_, Nov 11 2011 *)
%K nonn
%O 0,3
%A _N. J. A. Sloane_
%E More terms from _Harvey P. Dale_, Nov 11 2011