login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006052 Number of magic squares of order n composed of the numbers from 1 to n^2, counted up to rotations and reflections.
(Formerly M5482)
11

%I M5482

%S 1,0,1,880,275305224

%N Number of magic squares of order n composed of the numbers from 1 to n^2, counted up to rotations and reflections.

%C a(4) computed by Frenicle de Bessy (1605 ? - 1675), published in 1693. The article mentions the 880 squares and considers also 5*5, 6*6, 8*8, and other squares. - _Paul Curtz_, Jul 13 and Aug 12 2011

%C a(5) computed by Richard C. Schroeppel in 1973.

%C According to Pinn and Wieczerkowski, a(6) = (0.17745 +- 0.00016) * 10^20. - _R. K. Guy_, May 01 2004

%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Vol. II, pp. 778-783 gives the 880 4 X 4 squares.

%D M. Gardner, Mathematical Games, Sci. Amer. Vol. 249 (No. 1, 1976), p. 118.

%D M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 216.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Ian Cameron, Adam Rogers and Peter Loly, <a href="http://www.physics.umanitoba.ca/~icamern/Poland2012/Data/Bewedlo%20Codex.pdf">"The Library of Magical Squares" -- a summary of the main results for the Shannon entropy of magic and Latin squares: isentropic clans and indexing, in celebration of George Styan's 75th</a>.

%H Frenicle de Bessy, <a href="http://babel.hathitrust.org/cgi/pt?u=1&amp;num=423&amp;seq=11&amp;view=image&amp;size=100&amp;id=ucm.5323750390">Des carrez ou tables magiques</a>, Divers ouvrages de mathematique et de physique (1693), pp. 423-483.

%H Frenicle de Bessy, <a href="http://babel.hathitrust.org/cgi/pt?u=1&amp;num=484&amp;seq=9&amp;view=image&amp;size=100&amp;id=ucm.5323750390">Table générale des carrez de quatre</a>, Divers ouvrages de mathematique et de physique (1693), pp. 484-503.

%H I. Peterson, <a href="http://www.maa.org/mathland/mathtrek_10_18_99.html">Magic Tesseracts</a> [Broken link?]

%H K. Pinn and C. Wieczerkowski, <a href="http://www.arXiv.org/abs/cond-mat/9804109">Number of magic squares from parallel tempering Monte Carlo</a>, Internat. J. Modern Phys., 9 (4) (1998) 541-546.

%H R. Schroeppel, <a href="/A006052/a006052_2.pdf">Emails to N. J. A. Sloane, Jun. 1991</a>

%H N. J. A. Sloane & J. R. Hendricks, <a href="/A006052/a006052_3.pdf">Correspondence, 1974</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MagicSquare.html">Magic Square</a>

%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>

%e An illustration of the unique (up to rotations and reflections) magic square of order 3:

%e |---+---+---|

%e | 2 | 7 | 6 |

%e |---+---+---|

%e | 9 | 5 | 1 |

%e |---+---+---|

%e | 4 | 3 | 8 |

%e |---+---+---|

%Y Cf. A270876, A271103, A271104.

%K nonn,hard,nice,more

%O 1,4

%A _N. J. A. Sloane_

%E Definition corrected by _Max Alekseyev_, Dec 25 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:22 EST 2017. Contains 295054 sequences.