login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A006044 A traffic light problem.
(Formerly M4290)
6
6, 96, 960, 7680, 53760, 344064, 2064384, 11796480, 64880640, 346030080, 1799356416, 9160359936, 45801799680, 225485783040, 1095216660480, 5257039970304, 24970939858944, 117510305218560, 548381424353280, 2539871860162560, 11683410556747776, 53409876830846976 (list; graph; refs; listen; history; text; internal format)
OFFSET

4,1

COMMENTS

I have derived the terms in a rather laborious way (see the Maple program), following the Haight paper, where the signed sequence occurs. The simple g.f. for the positive sequence is conjectured by analogy with A006043. For the signed sequence it is, obviously, 6*x^4/(1+4*x)^4. The Maple program, probably not the simplest one, is for the signed sequence. - Emeric Deutsch, Apr 29 2004

Fourth column of triangle A152818 (1,1,1,1,4,2,1,12,...). [Paul Curtz, Dec 17 2008]

Column 3 of square array A152818. [Omar E. Pol, Jan 07 2009]

REFERENCES

F. A. Haight, Overflow at a traffic light, Biometrika, 46 (1959), 420-424.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 4..1000

FORMULA

It seems that the g.f. is 6*x^4/(1-4*x)^4 (for the positive sequence), a(n)=6*A038846(n).. - Emeric Deutsch, Apr 29 2004

a(n) = 4^(n-4)*(n-3)*(n-2)*(n-1). [Omar E. Pol, Jan 04 2009]

a(n) = 4^(n-4)*(n-1)!/(n-4)!. [Omar E. Pol, Jan 15 2009]

MAPLE

A:=(u, r)->r*u^(u-r-1)/(u-r)!: a:=proc(i, j) if j>i+1 then 0 elif j=i+1 then 1 else A(z-j+1, z-i) fi end: with(linalg): B:=proc(z, x) if z=x then 1 else (-1)^(z+x)*det(matrix(z-x, z-x, a)) fi end: seq(expand(subs(z=k, (z-1)!*B(k, 4))), k=4..26);

PROG

(MAGMA) [4^(n-4)*(n-3)*(n-2)*(n-1): n in [4..30]]; // Vincenzo Librandi, Aug 14 2011

CROSSREFS

Cf. A152818. [From Omar E. Pol, Jan 05 2009]

Cf. A000142, A006043, A152818, A154120. [From Omar E. Pol, Jan 15 2009]

Sequence in context: A279868 A055358 A030989 * A202078 A227262 A001805

Adjacent sequences:  A006041 A006042 A006043 * A006045 A006046 A006047

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Emeric Deutsch, Apr 29 2004

Deleted erroneous reference Martin J. Erickson (erickson(AT)truman.edu), Nov 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 25 05:56 EDT 2017. Contains 287012 sequences.