login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005987 Number of symmetric plane partitions of n.
(Formerly M0562)
12
1, 1, 1, 2, 3, 4, 6, 8, 12, 16, 22, 29, 41, 53, 71, 93, 125, 160, 211, 270, 354, 450, 581, 735, 948, 1191, 1517, 1902, 2414, 3008, 3791, 4709, 5909, 7311, 9119, 11246, 13981, 17178, 21249, 26039, 32105, 39213, 48159, 58669, 71831, 87269 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
From M. F. Hasler, Sep 26 2018: (Start)
A plane partition of n is a matrix of nonnegative integers that sum up to n, and such that A[i,j] >= A[i+1,j], A[i,j] >= A[i,j+1] for all i,j. We can consider A of infinite size but there are at most n nonzero rows and columns and we ignore empty rows or columns. It is symmetric iff A = transpose(A), i.e., A[i,j] = A[j,i] for all i,j.
For any n, we have A000219(n) = a(n) + 2*A306098(n) where A306098(n) is the number of equivalence classes, modulo transposition, of non-symmetric plane partitions. (For any of these, its transpose is a different plane partition of n.) (End)
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 134.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Corollary 7.20.5
LINKS
A. Björner and R. P. Stanley, with  A combinatorial miscellany, L'Enseignement Math., Monograph No. 42, 2010.
R. P. Stanley, Theory and application of plane partitions II, Studies in Appl. Math., 50 (1971), 259-279. DOI:10.1002/sapm1971503259. [Scan on author's personal web page].
FORMULA
G.f.: Product_{i=1..oo} 1/(1-x^(2i-1))/(1-x^(2i))^floor(i/2). (Stanley 1971, Prop.14.3; Björner & Stanley 2010, p. 33).
a(n) ~ exp(3 * Zeta(3)^(1/3) * n^(2/3) / 2^(5/3) + Pi^2 * n^(1/3) / (2^(10/3) * Zeta(3)^(1/3)) - Pi^4 / (384*Zeta(3)) + 1/24) * Zeta(3)^(13/72) / (2^(77/72) * sqrt(3*Pi*A) * n^(49/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, May 05 2018
EXAMPLE
From M. F. Hasler, Sep 26 2018: (Start)
The only plane partition of n = 0 is the empty partition []; we consider it to be symmetric (as a 0 X 0 matrix), so a(0) = 1.
The only plane partition of n = 1 is the partition [1] which is symmetric, so a(1) = 1.
For n = 2 we have the partitions [2], [1 1] and [1; 1] (where ; denotes the end of a row). Only the first one is symmetric, so a(2) = 1.
For n = 3 we have the partitions [3], [2 1], [2; 1], [1 1; 1 0], [1 1 1], [1; 1; 1]. The first and the fourth are symmetric, so a(3) = 2. (End)
MATHEMATICA
terms = 46; s = Product[1/(1 - x^(2i-1))/(1 - x^(2i))^Floor[i/2], {i, 1, Ceiling[terms/2]}] + O[x]^terms; CoefficientList[s, x] (* Jean-François Alcover, Jul 10 2017 *)
PROG
(PARI) a(n)=polcoeff(prod(k=1, n, (1-x^k)^-if(k%2, 1, k\4), 1+x*O(x^n)), n) \\ Michael Somos, May 19 2000
(PARI) show(n)=select(t->(t=matconcat(t~))~==t, PlanePartitions(n)) \\ Using PlanePartitions() given in A091298, this selects and returns the list of symmetric plane partitions of n. - M. F. Hasler, Sep 26 2018
CROSSREFS
Sequence in context: A321729 A180652 A046682 * A241828 A125895 A241344
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Wouter Meeussen, Dec 11 1999
Edited by M. F. Hasler, Sep 26 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 01:36 EDT 2024. Contains 371264 sequences. (Running on oeis4.)