login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005986 Number of column-strict plane partitions of n.
(Formerly M1393)
6
1, 2, 5, 11, 23, 45, 87, 160, 290, 512, 889, 1514, 2547, 4218, 6909, 11184, 17926, 28449, 44772, 69862, 108205, 166371, 254107, 385617, 581729, 872535, 1301722, 1932006, 2853530, 4194867, 6139361, 8946742, 12984724, 18771092, 27033892 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Note that the asymptotic formula by Gordon and Houten, cited in Stanley's paper (proposition 20.3, p. 274) is for sequence A003293, not for A005986. In addition in the same paper proposition 20.2 is wrong and Wright's formula is incomplete (for correct version see A000219). - Vaclav Kotesovec, Feb 28 2015

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Vaclav Kotesovec, Graph - The asymptotic ratio.

Richard P. Stanley, Theory and Application of Plane Partitions, II, Studies in Appl. Math. 50 (1971), 259-279. DOI:10.1002/sapm1971503259.

FORMULA

G.f.: 1/Product((1-x^i)*Product(1-x^j,j=2*i-1..infinity),i=1..infinity) or 1/Product((1-x^i)^floor((i+3)/2),i=1..infinity). - Vladeta Jovovic, May 21 2006

a(n) ~ Zeta(3)^(25/72) * exp(1/24 - 25*Pi^4 / (3456*Zeta(3)) + 5*Pi^2*n^(1/3) / (24*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3)*n^(2/3) / 2) / (A^(1/2) * 2^(5/4) * 3^(1/2) * Pi * n^(61/72)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 07 2015

MAPLE

with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j))*b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n, 2)=0, n+2, n+3)/2): seq(a(n), n=0..45);  # Vaclav Kotesovec, Mar 02 2015 after Alois P. Heinz

MATHEMATICA

CoefficientList[ Series[ Product[1/((1 - x^i)*Product[(1 - x^j), {j, 2 i - 1, 40}]), {i, 40}], {x, 0, 40}], x] (* or *)

CoefficientList[ Series[ Product[1/(1 - x^j)^Floor[(j + 3)/2], {j, 40}], {x, 0, 40}], x] (* Robert G. Wilson v, May 12 2014 *)

nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+5-(-1)^k)/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)

PROG

(PARI) A005986_list(N, x=(O('x^N)+1)*'x)=Vec(prod(k=1, N, 1/(1-x^k)^((k+3)\2))) \\ M. F. Hasler, Sep 26 2018

CROSSREFS

Cf. A003293.

Sequence in context: A064934 A227637 A171985 * A277828 A147878 A179902

Adjacent sequences:  A005983 A005984 A005985 * A005987 A005988 A005989

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Vladeta Jovovic, May 21 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 10:39 EDT 2019. Contains 328147 sequences. (Running on oeis4.)