login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005981 Number of 2 up, 2 down, 2 up, ... permutations of length 2n + 1.
(Formerly M4276)
9
1, 1, 6, 71, 1456, 45541, 2020656, 120686411, 9336345856, 908138776681, 108480272749056, 15611712012050351, 2664103110372192256, 531909061958526321421, 122840808510269863827456, 32491881630252866646683891, 9758611490955498257378246656 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

P. R. Stein, personal communication.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..100

Nicolas Basset, Counting and generating permutations using timed languages, 2013.

Nicolas Basset, Counting and generating permutations in regular classes of permutations, HAL Id: hal-01093994, 2014.

B. Shapiro and A. Vainshtein, Counting real rational functions with all real critical values, Moscow Math. J., 3 (2003), 647-659.

P. R. Stein & N. J. A. Sloane, Correspondence, 1975

Eric Weisstein's World of Mathematics, Generalized Hyperbolic Functions

FORMULA

E.g.f.: x + Sum_{n>=1} a(n)*(x^(2n+1))/(2n+1)! = (f(0,x)*f(1,x) -f(2,x)*f(3,x)+ f(3,x))/(f(0,x)^2 - f(1,x)*f(3,x)), where f(j,x) = Sum_{k>=0} (x^(4k+j))/(4k+j)!, j = 0,1,2,3, is the j-th generalized hyperbolic function. - Peter Bala, Jul 13 2007

Basset (2013) gives an e.g.f. involving trigonometric and hyperbolic functions. - N. J. A. Sloane, Dec 24 2013

a(n) ~ 4 * (2*n+1)! / (tan(r/2)^2 * r^(2*n+2)), where r = A076417 = 1.8751040687119611664453082410782141625701117335310699882454137131... is the root of the equation cos(r)*cosh(r) = -1. - Vaclav Kotesovec, Feb 01 2015

MAPLE

g:=((cosh(x)-1)*sin(x)+(cos(x)+1)*sinh(x))/(cos(x)*cosh(x)+1): series(%, x, 35):

seq(n!*coeff(%, x, n), n=1..34, 2); # Peter Luschny, Feb 07 2017

MATHEMATICA

egf = ((Cosh[x]-1)*Sin[x]+(Cos[x]+1)*Sinh[x])/(Cos[x]*Cosh[x]+1); a[n_] := SeriesCoefficient[egf, {x, 0, 2*n+1}]*(2*n+1)!; Array[a, 17, 0] (* Jean-Fran├žois Alcover, Mar 13 2014 *)

CROSSREFS

Bisection of A058258.

Cf. A131453, A131454, A131455, A076417.

Sequence in context: A218676 A127135 A187651 * A024272 A167813 A242232

Adjacent sequences:  A005978 A005979 A005980 * A005982 A005983 A005984

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 16 23:44 EST 2019. Contains 319206 sequences. (Running on oeis4.)