This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005946 Number of n-step mappings with 5 inputs. (Formerly M5303) 0
 1, 52, 358, 1304, 3455, 7556, 14532, 25488, 41709, 64660, 95986, 137512, 191243, 259364, 344240, 448416, 574617, 725748, 904894, 1115320, 1360471, 1643972, 1969628, 2341424, 2763525, 3240276, 3776202, 4376008, 5044579, 5786980, 6608456 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Hogg & Huberman paper has a misprint a(4)=304. - Sean A. Irvine, Oct 11 2016 REFERENCES T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures, Phys. Review A 32 (1985), 2338-2346. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. Hogg and B. A. Huberman, Attractors on finite sets: the dissipative dynamics of computing structures,  Phys. Review A 32 (1985), 2338-2346. (Annotated scanned copy) B. A. Huberman, T. H. Hogg, & N. J. A. Sloane, Correspondence, 1985 FORMULA a(n) = h(5,n) where h(n, m) = Sum_{j} (n!/f(j)) * Product_{k=1..n} h(k,m-1)^(j(k)) and the sum runs over all partitions j=(j(1),...,j(n)) of n and f(j) = Product_{k=1..n} j(k)! * (k!)^(j(k)). That is, j satisfies Sum_{k=1..n} k*j(k) = n [From Hogg & Huberman]. - Sean A. Irvine, Oct 11 2016 CROSSREFS Sequence in context: A264494 A232404 A257940 * A200549 A000527 A294055 Adjacent sequences:  A005943 A005944 A005945 * A005947 A005948 A005949 KEYWORD nonn AUTHOR EXTENSIONS a(4) corrected and more terms from Sean A. Irvine, Oct 11 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 03:37 EDT 2019. Contains 328040 sequences. (Running on oeis4.)