login
A005920
Tricapped prism numbers.
(Formerly M4611)
6
1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420
OFFSET
0,2
COMMENTS
a(n) = (n+1)*A000326(n+1) - Sum_{i=0...n} A001477(i) = (n+1)*((n+1)*(3*n+2)/2) - A000217(n) = (n+1)*(3*n^2+4n+2)/2. - Bruno Berselli, Apr 25 2010
Also central terms of triangle A093445: a(n) = A093445(2*n+1,n+1). - Reinhard Zumkeller, Oct 03 2012
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
FORMULA
a(n) = (1/2) * (3*n^3 + 7*n^2 + 6*n + 2). - Ralf Stephan, Apr 20 2004
a(0)=1, a(1)=9, a(2)=33, a(3)=82, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 25 2012
E.g.f.: exp(x)*(2 + 16*x + 16*x^2 + 3*x^3)/2. - Stefano Spezia, Jun 10 2022
MAPLE
a:=n->(3*n^3+7*n^2+6*n+2)/2: seq(a(n), n=0..60);
A005920:=(1+5*z+3*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
CoefficientList[ Series[(1+5x+3x^2)/(1-x)^4, {x, 0, 39}], x] (* Jean-François Alcover, Dec 02 2011, after Simon Plouffe *)
LinearRecurrence[{4, -6, 4, -1}, {1, 9, 33, 82}, 40] (* Harvey P. Dale, Sep 25 2012 *)
PROG
(Haskell)
a005920 n = (n * (n * (3 * n + 7) + 6) + 2) `div` 2
-- Reinhard Zumkeller, Oct 03 2012
(PARI) a(n)=n*(3*n^2+7*n+6)/2+1 \\ Charles R Greathouse IV, Oct 07 2015
(Magma) [(3*n^3+7*n^2+6*n+2)/2 : n in [0..50]]; // Wesley Ivan Hurt, May 05 2021
CROSSREFS
Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005945, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. - Bruno Berselli, Apr 25 2010
Sequence in context: A146823 A147027 A146256 * A020324 A146171 A146188
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Emeric Deutsch, May 09 2004
STATUS
approved