This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005920 Tricapped prism numbers. (Formerly M4611) 6
 1, 9, 33, 82, 165, 291, 469, 708, 1017, 1405, 1881, 2454, 3133, 3927, 4845, 5896, 7089, 8433, 9937, 11610, 13461, 15499, 17733, 20172, 22825, 25701, 28809, 32158, 35757, 39615, 43741, 48144, 52833, 57817, 63105, 68706, 74629, 80883, 87477, 94420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = (n+1)*A000326(n+1) - Sum_{i=0...n} A001477(i) = (n+1)*((n+1)*(3*n+2)/2) - A000217(n) = (n+1)*(3*n^2+4n+2)/2. - Bruno Berselli, Apr 25 2010 Also central terms of triangle A093445: a(n) = A093445(2*n+1,n+1). - Reinhard Zumkeller, Oct 03 2012 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..10000 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558. Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA a(n) = (1/2) * (3n^3 + 7n^2 + 6n + 2). - Ralf Stephan, Apr 20 2004 a(0)=1, a(1)=9, a(2)=33, a(3)=82, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Sep 25 2012 MAPLE a:=n->(3*n^3+7*n^2+6*n+2)/2: seq(a(n), n=0..60); A005920:=(1+5*z+3*z**2)/(z-1)**4; # conjectured by Simon Plouffe in his 1992 dissertation MATHEMATICA CoefficientList[ Series[(1+5x+3x^2)/(1-x)^4, {x, 0, 39}], x] (* Jean-François Alcover, Dec 02 2011, after Simon Plouffe *) LinearRecurrence[{4, -6, 4, -1}, {1, 9, 33, 82}, 40] (* Harvey P. Dale, Sep 25 2012 *) PROG (Haskell) a005920 n = (n * (n * (3 * n + 7) + 6) + 2) `div` 2 -- Reinhard Zumkeller, Oct 03 2012 (PARI) a(n)=n*(3*n^2+7*n+6)/2+1 \\ Charles R Greathouse IV, Oct 07 2015 CROSSREFS Cf. for recursive method [Ar(m) is the m-th term of a sequence in the OEIS] a(n) = n*Ar(n) - A000217(n-1) or a(n) = (n+1)*Ar(n+1) - A000217(n) or similar: A081436, A005945, A006003 and the terms T(2, n) or T(3, n) in the sequence A125860. - Bruno Berselli, Apr 25 2010 Sequence in context: A146823 A147027 A146256 * A020324 A146171 A146188 Adjacent sequences:  A005917 A005918 A005919 * A005921 A005922 A005923 KEYWORD nonn,easy,nice AUTHOR EXTENSIONS More terms from Emeric Deutsch, May 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:51 EDT 2019. Contains 328093 sequences. (Running on oeis4.)