login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005847 Imaginary quadratic fields with class number 2 (a finite sequence).
(Formerly M3749)
9
5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

n such that Q(sqrt(-n)) has class number 2.

The PARI code lists the imaginary quadratic fields Q(sqrt(-d)) with small class number and produces A003173 (class number 1), A005847 (2), A006203 (3).

REFERENCES

J. M. Masley, Where are the number fields with small class number?, pp. 221-242 of "Number Theory, Carbondale 1979", Lect. Notes Math. 751 (1982).

P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 142.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..18.

Steven Arno, M. L. Robinson, Ferrell S. Wheeler, Imaginary quadratic fields with small odd class number, Acta Arith. 83 (1998), pp. 295-330.

Keith Matthews, Tables of imaginary quadratic fields with small class numbers.

Index entries for sequences related to quadratic fields

MATHEMATICA

Select[Range[200], MoebiusMu[#] != 0 && NumberFieldClassNumber[Sqrt[-#]] == 2 &] (* Alonso del Arte, May 28 2015 *)

PROG

(PARI) { bnd = 10000; S = vector(10, X, []); for (i = 1, bnd, if (issquarefree(i), n = qfbclassno(if(i%4==3, -i, -4*i)); if (n<11, S[n] = concat(S[n], i), ), )); } \\ Robert Harley (Robert.Harley(AT)inria.fr)

CROSSREFS

Sequence in context: A062845 A236307 A166563 * A109758 A015820 A096728

Adjacent sequences:  A005844 A005845 A005846 * A005848 A005849 A005850

KEYWORD

nonn,fini,full

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 7 15:45 EDT 2015. Contains 259356 sequences.