login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005794 Number of SO_1^{2+}(Z) orbits of Lorentzian modular group.
(Formerly M0079)
1
1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 3, 3, 1, 2, 4, 4, 2, 2, 3, 5, 2, 1, 6, 5, 2, 3, 4, 4, 3, 2, 6, 7, 2, 2, 6, 7, 1, 3, 8, 5, 4, 2, 3, 9, 3, 2, 10, 7, 3, 4, 6, 5, 3, 4, 8, 10, 2, 1, 9, 8, 3, 4, 10, 8, 4, 4, 3, 10, 4, 2, 14, 8, 2, 5, 7, 9, 4, 2, 10, 13, 5, 2, 9, 10 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Each SO_1^{2+}(Z) orbit has a representative (z, x, y) in Z^3 with z > x >= 0, z > y >= 0 and z >= x+y. We are looking for solutions of n = z^2 - x^2 - y^2. - Michael Somos, Jul 13 2013

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=1..84.

G. J. Fox, Letter to N. J. A. Sloane, May 1991

Glenn J. Fox and Phillip E. Parker, The Lorentzian modular group and nonlinear lattices, The mathematical heritage of C. F. Gauss, 282-303, World Sci. Publishing, River Edge, NJ, 1991.

Glenn J. Fox and Phillip E. Parker, The Lorentzian modular group and nonlinear lattices II, The mathematical heritage of C. F. Gauss, 282-303, World Sci. Publishing, River Edge, NJ, 1991.

Index entries for sequences related to modular groups

EXAMPLE

x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + x^10 + 3*x^11 + ...

a(11) = 3 since orbits(11) = [[4, 1, 2], [4, 2, 1], [6, 5, 0]] where 11 = 4^2-1^2-2^2 = 4^2-2^2-1^2 = 6^2-5^2-0^2 for the three SO_1^{2+}(Z) orbit representatives.

MATHEMATICA

a[n_] := Sum[If[Mod[n-i, 2] == 1, 0, j = (n+i*i)/2; DivisorSum[j, Boole[# >= i && j >= #*i && (j <= #^2 || (i>0 && # > i && j > #*i))]&]], {i, 0, Floor[Sqrt[n]]}]; Array[a, 105] (* Jean-Fran├žois Alcover, Dec 03 2015, adapted from PARI *)

PROG

(PARI) {a(n) = my(j); if( n<1, 0, sum( i=0, sqrtint(n), if( (n-i)%2, 0, sumdiv( j = (n + i*i) / 2, d, d>=i && j>=d*i && (j<=d*d || (i>0 && d>i && j>d*i))))))} /* Michael Somos, Jul 13 2013 */

(PARI) {orbits(n) = local(j, v=[], x, y, z); if( n<1, 0, forstep( i=n%2, sqrtint(n), 2, fordiv( j = (n + i*i) / 2, d, x = d-i; y = j/d-i; z = x+y+i; if( x>=0 && y>=0 && (y<=x || (i>0 && x>0 && y>0)), v = concat([[z, y, x]], v)))); vecsort(v))} /* Michael Somos, Jul 13 2013 */

CROSSREFS

Cf. A005793.

Sequence in context: A029346 A238902 A030496 * A280860 A208993 A328029

Adjacent sequences:  A005791 A005792 A005793 * A005795 A005796 A005797

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 01:24 EST 2019. Contains 329142 sequences. (Running on oeis4.)