This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005793 Number of O_1^{2+}(Z)-orbits of Lorentzian modular group. (Formerly M0078) 4
 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 2, 3, 1, 2, 3, 4, 2, 2, 2, 4, 2, 1, 4, 5, 2, 2, 3, 4, 2, 2, 4, 6, 2, 2, 4, 6, 1, 2, 5, 5, 3, 2, 2, 6, 3, 2, 6, 7, 3, 3, 4, 4, 2, 3, 5, 8, 2, 1, 5, 7, 2, 3, 7, 7, 3, 3, 2, 7, 3, 2, 8, 8, 2, 3, 5, 6, 3, 2, 6, 10, 4, 2, 5, 8, 2, 3, 7, 5, 4, 4, 4, 8, 2, 3, 9, 11, 2, 4, 6, 6, 4, 2, 6, 10 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Table 2 of Fox and Parker lists a(n) for n=1 to 1000. - Michael Somos, Jul 13 2013 "Each O_1^{2+}(Z)-orbit has a representative (z, x, y) in Z^3 with z > x >= y >= 0 and z >= x+y" from proof of Corollary 2.4 of Fox and Parker. We are looking for solutions of n = z^2 - x^2 - y^2. - Michael Somos, Jul 13 2013 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS G. C. Greubel, Table of n, a(n) for n = 1..10000 G. J. Fox, Letter to N. J. A. Sloane, May 1991 Glenn J. Fox and Phillip E. Parker, The Lorentzian modular group and nonlinear lattices, The mathematical heritage of C. F. Gauss, 282-303, World Sci. Publishing, River Edge, NJ, 1991. Glenn J. Fox and Phillip E. Parker, The Lorentzian modular group and nonlinear lattices II, The mathematical heritage of C. F. Gauss, 282-303, World Sci. Publishing, River Edge, NJ, 1991. EXAMPLE x + x^2 + x^3 + 2*x^4 + x^5 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + x^10 + 3*x^11 + ... a(8) = 3 since orbits(8) = [[3, 1, 0], [4, 2, 2], [5, 4, 1]] where 8 = 3^2-1^2-0^2 = 4^2-2^2-2^2 = 5^2-4^2-1^2 for the three O_1^{2+}(Z)-orbit representatives. - Michael Somos, Jul 13 2013 MATHEMATICA r[n_] := Reduce[z > x >= y >= 0 && z >= x + y && n == z^2 - x^2 - y^2, {x, y, z}, Integers]; a[n_] := Switch[rn = r[n]; Head[rn], And, 1, Or, Length[rn]]; Table[Print["a(", n, ") = ", an = a[n], " ", {x, y, z} /. {ToRules[rn]}]; an, {n, 1, 105}] (* or, from 1st PARI script: *) a[n_] := Sum[If[Mod[n - i, 2] != 0, 0, DivisorSum[j = (n + i*i)/2, Boole[# >= i && #^2 <= j] &]], {i, 0, Sqrt[n] }]; Array[a, 105] (* Jean-François Alcover, Dec 02 2015 *) PROG (PARI) {a(n) = my(j); if( n<1, 0, sum( i=0, sqrtint(n), if( (n-i)%2, 0, sumdiv( j = (n + i*i) / 2, d, d>=i && d*d <= j))))} /* Michael Somos, Feb 14 2002 */ (PARI) {orbits(n) = local(j, v=[]); if( n<1, 0, forstep( i=n%2, sqrtint(n), 2, fordiv( j = (n + i*i) / 2, d, if( d>=i && d*d <= j, v = concat( [[d+j/d-i, j/d-i, d-i]], v)))); vecsort(v))} /* Michael Somos, Jul 13 2013 */ CROSSREFS Cf. A005794. Sequence in context: A319420 A267134 A098280 * A183391 A029346 A238902 Adjacent sequences:  A005790 A005791 A005792 * A005794 A005795 A005796 KEYWORD nonn AUTHOR EXTENSIONS More terms from Michael Somos, Feb 14 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 14:59 EST 2019. Contains 329979 sequences. (Running on oeis4.)