login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005791 5-dimensional Catalan numbers.
(Formerly M5281)
10
1, 1, 42, 6006, 1662804, 701149020, 396499770810, 278607172289160, 231471904322784840, 219738059326729823880, 232553551737813227594400, 269396678720275351794712800, 336839101096824285057473785200, 449620757769949216266129125515200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of standard tableaux of shape (n,n,n,n,n). - Emeric Deutsch, May 13 2004

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Snover, Stephen L.; Troyer, Stephanie F.; A four-dimensional Catalan formula. Proceedings of the Nineteenth Manitoba Conference on Numerical Mathematics and Computing (Winnipeg, MB, 1989). Congr. Numer. 75 (1990), 123-126.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..294

Shalosh B. Ekhad and Doron Zeilberger, Computational and Theoretical Challenges on Counting Solid Standard Young Tableaux. Also arXiv preprint arXiv:1202.6229, 2012. - N. J. A. Sloane, Jul 07 2012

K. Gorska and K. A. Penson, Multidimensional Catalan and related numbers as Hausdorff moments, arXiv preprint arXiv:1304.6008 [math.CO], 2013, and Prob. Math. Stat. 33 (2) (2013) 265-274.

S. Snover, Letter to N. J. A. Sloane, May 1991

S. F. Troyer & S. L. Snover, m-Dimensional Catalan numbers, Preprint, 1989. (Annotated scanned copy)

FORMULA

a(n) = 0!*1!*..*(k-1)! *(k*n)! / ( n!*(n+1)!*..*(n+k-1)! ) for k=5.

(n+4)*(n+3)*(n+2)*(n+1)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Aug 10 2015

G.f.: x*5F4(1,6/5,7/5,8/5,9/5;3,4,5,6;3125*x). - R. J. Mathar, Aug 10 2015

a(n) ~ 72*5^(5*n+1/2)/(Pi^2*n^12). - Vaclav Kotesovec, Nov 18 2016

E.g.f.: 4F4(1/5,2/5,3/5,4/5; 2,3,4,5; 3125*x). - Ilya Gutkovskiy, Oct 13 2017

MAPLE

a:= n-> (5*n)! * mul(i!/(n+i)!, i=0..4):

seq(a(n), n=0..20);  # Alois P. Heinz, Jul 23 2017

MATHEMATICA

Table[288*(5*n)!/(n!*(n+1)!*(n+2)!*(n+3)!*(n+4)!), {n, 1, 20}] (* Vaclav Kotesovec, Nov 18 2016 *)

CROSSREFS

A row of A060854.

Sequence in context: A091545 A101630 A273628 * A167668 A277665 A215837

Adjacent sequences:  A005788 A005789 A005790 * A005792 A005793 A005794

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

a(0)=1 prepended by Alois P. Heinz, Jul 23 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)