login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005721 Central quadrinomial coefficients.
(Formerly M3681)
11
1, 4, 44, 580, 8092, 116304, 1703636, 25288120, 379061020, 5724954544, 86981744944, 1327977811076, 20356299454276, 313095240079600, 4829571309488760, 74683398325804080, 1157402982351003420, 17971185794898859248 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum of squares of entries in the n-th row of triangle of quadrinomial coefficients A008287 (Pascal triangle of order 4). - Adi Dani, Jul 03 2011

Central coefficients in triangle A008287 ((1 + x + x^2 + x^3)^n), see link. - Zagros Lalo, Sep 25 2018

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.

Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 601, 602.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Robert Israel, Table of n, a(n) for n = 0..597 (first 101 terms from T. D. Noe)

Adi Dani, Restricted compositions of natural numbers-section: Generalized Pascal triangle

R. K. Guy, editor, Western Number Theory Problems, 1985-12-21 & 23, Typescript, Jul 13 1986, Dept. of Math. and Stat., Univ. Calgary, 11 pages. Annotated scan of pages 1, 3, 7, 9, with permission. See Problem 85:02.

R. K. Guy, Letter to N. J. A. Sloane, 1987

Zagros Lalo, Formula for the Central coefficients in triangle A008287 ((1 + x + x^2 + x^3)^n).

FORMULA

a(n) = A005190(2*n) = A008287(2*n, 3*n).

G.f.:  Let Z(x) be a solution of (-1+16*x)*(32*x-27)^2*Z^6+9*(-9+64*x)*(32*x-27)*Z^4+81*(80*x-27)*Z^2+729 = 0, with Z(0)=1. Compute a Puiseux series for Z(x) at x=0, then Z(x) in C[[x^(1/3)]].  Remove all non-integer powers of x.  The result is the generating function for A005721.  - Mark van Hoeij, Oct 29 2011

G.f.: F(G^(-1)(x)) where F(t) = (t^2-1)*(6*t+t^2+1)^(1/2)/(3*t^3+13*t^2+t-1) and G(t) = t/((t+1)^2*(6*t+t^2+1)). - Mark van Hoeij, Oct 30 2011

From Bradley Klee, Jun 25 2018: (Start)

128*(n-1)*(2*n-3)*(2*n-1)*(5*n-1)*a(n-2) - 8*(2*n-1)*(145*n^3-319*n^2+201*n-30)*a(n-1) + 3*n*(3*n-2)*(3*n-1)*(5*n-6)*a(n) = 0.

G.f. G(x) satisfies a Picard-Fuchs type differential equation, 0 = Sum_{m=0..5, n=0..3} M_{m,n} x^m*(d^n/dx^n G(x)), with integer matrix:

M={{  24,     -6,      0,     0},

   {-768,   1488,    -54,     0},

   {6144, -16128,   2520,   -27},

   {   0,  55296, -29568,   896},

   {   0,      0,  49152, -7936},

   {   0,      0,      0,  8192}}(End)

a(n) = sum_{k=0..floor(3n/4)} (-1)^k binomial(2n,k) * binomial(5n-4k-1,3n-4k). - Muniru A Asiru, Sep 26 2018

a(n) = Sum_{i=0..n} Sum_{j=n..2n}(f); f= ( (2*n)!/((j - n)!*(3*n + i - 2*j)!*(j - 2*i)!*i!) ); f=0 for (3*n + i - 2*j)<0 or (j - 2*i)<0. See also formula in Links section. - Zagros Lalo, Sep 27 2018

MAPLE

F := (t^2-1)*(6*t+t^2+1)^(1/2)/(3*t^3+13*t^2+t-1); G := t/((t+1)^2*(6*t+t^2+1));

Ginv := RootOf(numer(G-x), t); series(eval(F, t=Ginv), x=0, 20);

seq(coeff((1+x+x^2+x^3)^(2*n), x, 3*n), n=0..50); # Robert Israel, Nov 01 2015

MATHEMATICA

Table[Sum[(-1)^k*Binomial[2*n, k]*Binomial[5*n-4*k-1, 3*n-4*k], {k, 0, 3*n/4}], {n, 0, 25}] (* Adi Dani, Jul 03 2011 *)

RecurrenceTable[{128*(n-1)*(2*n-3)*(2*n-1)*(5*n-1)*a[n-2] -8*(2*n-1)*(145*n^3-319*n^2+201*n-30)*a[n-1]+3*n*(3*n-2)*(3*n-1)*(5*n-6)*a[n]==0,

a[0]==1, a[1]==4}, a, {n, 0, 5000}] (* Bradley Klee, Jun 25 2018 *)

a[n_] := a[n] = Sum[(2*n)!/((j - n)!*(3*n + i - 2*j)!*(j - 2*i)!*i!), {i, 0, n}, {j, n, 2*n}]; Table[a[n], {n, 0, 20}] (* Zagros Lalo, Sep 25 2018 *)

PROG

(PARI) a(n)={local(v=Vec((1+x+x^2+x^3)^n)); sum(k=1, #v, v[k]^2); }

(PARI) a(n)=sum(k=0, 3*n/4, (-1)^k*binomial(2*n, k)*binomial(5*n-4*k-1, 3*n-4*k));

(PARI) vector(30, n, n--; polcoeff((1+x+x^2+x^3)^(2*n), (6*n)>>1)) \\ Altug Alkan, Nov 01 2015

(GAP) List([0..20], n->Sum([0..Int(3*n/4)], k->(-1)^k*Binomial(2*n, k)*Binomial(5*n-4*k-1, 3*n-4*k))); # Muniru A Asiru, Sep 26 2018

(Magma) [(&+[(-1)^k*Binomial(2*n, k)*Binomial(5*n-4*k-1, 3*n-4*k): k in [0..Floor(3*n/4)]]): n in [0..30]]; // G. C. Greubel, Oct 06 2018

CROSSREFS

Cf. A002426, A005190, A008287.

Sequence in context: A223053 A222288 A053315 * A103870 A056063 A218224

Adjacent sequences:  A005718 A005719 A005720 * A005722 A005723 A005724

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 19:38 EDT 2022. Contains 357228 sequences. (Running on oeis4.)