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Abstract
A (1, k)-composition of a positive integer n consists of an

ordered sequence of the integers 1 and k whose sum is n. A
palindromic (1, k)-composition is one for which the sequence
is the same from left to right as from right to left. We give
recursive equations and generating functions for the total num-
ber of such compositions and palindromes, and for the number
of 1’s, k’s, “+”signs and summands in all (1, k)-compositions
and (1, k)-palindromes. We look at patterns in the values for
the total number of (1, k)-compositions and (1, k)-palindromes
and derive recusive relations and generating functions for the
number of levels, rises and drops in all (1, k)-compositions and
(1, k)-palindromes.
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1. Introduction

A (1, k)-composition of a positive integer n consists of an ordered se-
quence of the integers 1 and k whose sum is n. A palindromic (1, k)-
composition is one for which the sequence is the same from left to right as
from right to left. For the remainder of this paper we will refer to palin-
dromic (1, k)-compositions by the short-hand term (1, k)-palindrome.
Alladi and Hoggatt [1] have considered (1,2)-compositions and (1,2)-

palindromes. They count the number of such compositions and palin-
dromes, the number of summands, and the number of times either a 1
or a 2 occurs in all (1,2)-compositions and (1,2)-palindromes, respectively.
Furthermore, they count the number of “+”-signs and the number of rises
(a summand followed by a larger summand), levels (a summand followed
by itself) and drops (a summand followed by a smaller summand) in all
such compositions and palindromes, respectively. Hoggatt and Bicknell [3]
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have looked at more general compositions and palindromes, namely those
for which the summands are selected from a finite or countably infinite set
S. For example, if only the summands 1 and 2 are allowed in the com-
positions, then S = {1, 2}. Hoggatt and Bicknell have derived generating
functions for the number of compositions, palindromes, number of sum-
mands, “+”-signs, and the number of times a particular summand occurs
in all such compositions or palindromes of n. However, since the possible
values of the summands come from a very general set, they were not able
to develop recurrence relations and generating functions for the number of
rises, levels and drops in this setting.
We will focus on a generalization of the (1,2)-compositions, namely, we

look at (1, k)-compositions and (1, k)-palindromes. In Section 2 we establish
our notation and derive recurrence relations for the total number of (1, k)-
compositions and (1, k)-palindromes, the number of times either a 1 or a k
occurs in all (1, k)-compositions and (1, k)-palindromes, and the number of
summands and “+”-signs in all (1, k)-compositions and (1, k)-palindromes
of n. Furthermore, we state the generating functions for these quantities
as a special case of the results in [3]. In Section 3, we investigate and give
combinatorial proofs for patterns among the number of (1, k)-compositions
and (1, k)-palindromes for different values of k. In Section 4 we derive
recursive formulas and the generating functions for the number of levels,
rises and drops in all (1, k)-compositions and (1, k)-palindromes of n.

2. Notation and basic results

We will use the following notation.

Cn,k, Pn,k = the number of (1, k)-compositions and (1, k)-
palindromes of n, respectively, where
C0,k = P0,k = 1 for all k

C+n,k, P
+
n,k = the number of “+” signs in all (1, k)-composi-

tions and (1, k)-palindromes of n, respectively
Csn,k, P

s
n,k = the number of summands in all (1, k)-composi-

tions and (1, k)-palindromes of n, respectively
Cln,k, P

l
n,k = the number of l’s in all (1, k)-compositions

and (1, k)-palindromes of n, respectively,
where l = 1 or k

rn,k, ln,k, dn,k = the number of rises, levels, and drops in all
(1, k)-compositions of n, respectively

r̃n,k, l̃n,k, d̃n,k = the number of rises, levels, and drops in all
(1, k)-palindromes of n, respectively

n ≡ k, n 6≡ k denotes n and k having the same and opposite
parity, respectively.
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Before we derive recurrence relations for the quantities of interest, we
will present different ways to create (1, k)-compositions and (1, k)-palin-
dromes. The first method is a recursive one: for n > k, we create the
(1, k)-compositions of n by either adding a 1 to the right end of the (1, k)-
compositions of n − 1, or by adding a k to the right end of the (1, k)-
compositions of n− k. Likewise, for (1, k)-palindromes, we add a 1 to both
sides of the (1, k)-palindromes of n − 2 or a k to both sides of the (1, k)-
palindromes of n−2k. We will refer to this method as the recursive creation
method. In addition, we can also enumerate (1, k)-palindromes by focusing
on the middle summand. Notice that the middle summand must have the
same parity as n. Thus, if n is even, either there is no middle summand,
and the (1, k)-palindrome is created by combining a (1, k)-composition of
n/2 with its reverse, or the middle summand is (an even) k, combined
with a (1, k)-composition of (n − k)/2 on the left and its reverse on the
right. If n is odd, then either the middle summand is a 1, combined with a
(1, k)-composition of (n − 1)/2 on the left and its reverse on the right, or
the middle summand is (an odd) k, combined with (1, k)-compositions of
(n− k)/2. This observation provides for a connection between the number
of (1, k)-compositions and (1, k)-palindromes.

Lemma 1 gives basic results for (1, k)-compositions, while Lemma 2 lists
basic results for (1, k)-palindromes. Recall that the generating function
Ga(x) for a sequence {an,k}∞n=0 is given by Ga(x) =

P∞
n=0 an,k · xn.

Lemma 1 1. Cn,k = Cn−1,k + Cn−k,k, with Cn,k = 1 for 0 ≤ n < k.

Alternatively, Cn,k =
Pbn/kc
j=0

¡
n−j(k−1)

j

¢
and GC(x) =

1
1−x−xk .

2. C1n,k = C
1
n−1,k+C

1
n−k,k+Cn−1,k, with C

1
n,k = n for 0 ≤ n < k. Alter-

natively, C1n,k =
Pbn/kc
j=0 (n−j ·k)¡n−j(k−1)j

¢
and GC1(x) = x

(1−x−xk)2 .

3. Ckn,k = Ckn−1,k + C
k
n−k,k + Cn−k,k, with C

k
n,k = 0 for 0 ≤ n < k.

Alternatively, Ckn,k =
Pbn/kc
j=0 j

¡
n−j(k−1)

j

¢
and GCk(x) = xk

(1−x−xk)2 .

4. Csn,k = C
1
n,k + C

k
n,k, and GCs(x) =

x+xk

(1−x−xk)2 .

5. C+n,k = C
s
n,k−Cn,k for n ≥ 1 with C+0,k = 0, and GC+(x) =

(x+xk)2

(1−x−xk)2 .

Proof: The recurrence relation for Cn,k follows directly from the recursive
creation method. Likewise for the recurrence relations of C1n,k and C

k
n,k, as

we get all the 1’s or k’s from the (1, k)-compositions of n−1 and n−k, and
then one additional 1 or k for each composition to which we add a 1 or k,
respectively. The initial conditions for these three quantities follow easily
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from the fact that the only (1, k)-composition of n for n < k consist of
n 1’s. The alternative formulas for these quantities follow by counting the
compositions first according to the number of k’s in the (1, k)-compositions,
and, for C1n,k and C

k
n,k, by multiplying these counts by the number of

1’s and k’s, respectively, then summing according to the number of k’s.
The recurrence relation for Csn,k is obvious as each summand has to be
either a 1 or a k, and the last recurrence relation follows because in each
(1, k)-composition, the number of “+” signs is one less than the number of
summands. The generating functions follow from Theorem 1.1, Theorem
1.3 and the remarks after Theorem 1.3 of [3], since the function F (x) =P
ak∈S x

ak defined in [3] reduces to F (x) = x+ xk. 2

We now derive the corresponding results for (1, k)-palindromes. In this
case, the initial conditions depend on the parity of n and k. We will use
n = 2i or n = 2i+1 and k = 2j or k = 2j+1, where i and j are non-negative
integers.

Lemma 2 1. Pn,k = Pn−2,k + Pn−2k,k with Pn,k = 1 for 0 ≤ n < k,
Pn,k = 1 for k ≤ n < 2k, n 6≡ k, and Pn,k = 2 for k ≤ n < 2k, n ≡ k.
Alternatively, Pn,k = Ci,k if n 6≡ k and Pn,k = Ci−j,k +Ci,k if n ≡ k,
and GP (x) =

1+x+xk

1−x2−x2k .

2. P 1n,k = P 1n−2,k + P
1
n−2k,k + 2Pn−2,k, with P

1
n,k = n for 0 ≤ n < k,

P 1n,k = n for k ≤ n ≤ 2k, n 6≡ k, and P 1n,k = 2n− k for k ≤ n ≤ 2k,
n ≡ k with GP 1(x) = x+2x2+x3+2x2+k−x2k+1

(1−x2−x2k)2 .

3. P kn,k = P kn−2,k + P
k
n−2k,k + 2Pn−2k,k, with P

k
n,k = 0 for 0 ≤ n < k,

P kn,k = 0 for k ≤ n < 2k, n 6≡ k, P kn,k = 1 for k ≤ n < 2k, n ≡ k,
P k2k,k = 2 for n 6≡ k, and P k2k,k = 3 for n ≡ k with GPk(x) =
xk+2x2k+x3k+2x2k+1−x2+k

(1−x2−x2k)2 .

4. P sn,k = P
1
n,k + P

k
n,k, with generating function GPS (x) =

x+2x2+x3+xk+2+x2k+1+xk+2x2k+x3k

(1−x2−x2k)2 .

5. P+n,k = P
s
n,k − Pn,k for n ≥ 1 with P+0,k = 0, with GP+(x) =

(x2+x2k)(1+2x+x2+2xk+x2k)
(1−x2−x2k)2 .

Proof: The first recurrence relation for Pn,k follows from the recursive
creation method. For the second recurrence relation, based on (1, k)-
compositions, we need to look at the parity of n and k. If n = 2i, then there
is either no middle summand, i.e., we get Cn/2,k = Ci,k palindromes, or, if k
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is also even, then we get additional (1, k)-palindromes with k as the middle
summand, of which there are C(n−k)/2,k = Ci−j,k. A similar argument can
be made for n = 2i+1, where the middle summand is either 1 or an odd k,
and there are C(n−1)/2,k = Ci,k and C(n−k)/2,k = Ci−j,k such palindromes,
respectively. The recurrence relations for P 1n,k and P

k
n,k follow again from

the recursive creation method, except that we now get two additional 1’s
or k’s for each palindrome of n− 2 and n− 2k, respectively. For all three
cases, the initial conditions follow from the fact that for n < k, the only
(1, k)-palindrome is the one consisting of n 1’s. If k ≤ n < 2k, then there
is the (1, k)-palindrome of n 1’s, and, if n ≡ k, the additional palindrome
which has a k as the middle summand, together with n−k 1’s. For n = 2k,
we get the (1, k)-palindrome consisting of two k’s in addition to the two
types of palindromes for k ≤ n < 2k. The recurrence relations for P sn,k and
P+n,k follow exactly as in the case of (1, k)-compositions. Finally, the gen-
erating functions follow from Theorem 1.2, Theorem 1.4 and the remarks
after Theorem 1.4 in [3]. 2

3. Structures in values of {Cn,k}∞n=0 for different k
We will now look at the sequences {Cn,k}∞n=0 and {Pn,k}∞n=0 for different

values of k and will give combinatorial proofs of the structures exhibited in
Table 1, which contains the values for Cn,k.
Note that the column for k = 2 in Table 1 contains the shifted Fibonacci

numbers, and that the columns for k = 3 through k = 9 appear as sequences
A000930, A03269, A003520, and A005708 - A005711 in [5]. There are
several examples of objects that are counted by sequence A000930 (k =
3), and we show the equivalence of these counts to the number of (1,3)-
compositions. The first example indicates that A000930 represents the
number of tilings of a 3-by-n rectangle with straight trominoes, i.e., 1-by-3
tiles. It is easy to see how the two counts are related: the trominoes can
only be placed vertically or as a block of three horizontal tiles. The first
case corresponds to a 1 in the composition, the second to a 3, as indicated
in the figure below.

←→ 1 + 1 + 3 + 1 + 3

Note that this process can be easily generalized to tilings of a k-by-
n rectangle with 1-by-k tiles, thus showing equivalence to the number of
(1,k)-compositions.
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The second example indicates that A000930 represents the number of
ordered partitions (= compositions) of n− 1 consisting of 1’s and 2’s with
no 2’s adjacent. Here the correspondence between the counts is not imme-
diately obvious, but can be easily demonstrated with an example. Since
the 2’s are not adjacent, each 2 is either followed by a 1, or appears as the
last summand on the right. To each such composition of n− 1, add a 1 on
the right, making them compositions of n. Now replace every instance of
21 with a 3, which results in compositions of n with 1’s and 3’s only. This
process can be reversed, thus the correspondence is one-to-one. Here is the
correspondence for the example given in [5] for n = 6.

111111 ←→ 11111 1131 ←→ 1121
3111 ←→ 2111 1113 ←→ 1112
1311 ←→ 1211 33 ←→ 212

Note that this example also points to the obvious generalization: The num-
ber of (1, k)-compositions of n is equal to the number of compositions of
n− 1 with 1’s and (k − 1)’s, where no (k − 1)’s are next to each other.
Sequence A000930 is also listed in [5, page 91] as an example of a third

order linear recurrence, where Ū−n = Cn−1,3. The sequence Ūn is defined
by Ūn = −Ūn−2 + Ūn−3 with initial conditions Ū0 = Ū1 = 1, and Ū2 = 1.
This corresponds to initial conditions C−3,3 = 1 and C−2,3 = C−1,3 = 0.
Finally, there is one reference given in [5] which recognizes the sequences

A000930, A03269, A003520, and A005708 - A005711 as members of a family
with recurrence relation a(n) = a(n− 1) + a(n− k). Di Cera and Kong [2]
count the number of ways to cover a linear lattice of n sites with molecules
that are k sites wide, where there is no overlap of molecules, but gaps
are allowed. It is easy to see how this relates to (1, k)-compositions –
each summand k corresponds to a molecule of size k, and each summand 1
corresponds to an empty site on the lattice, as shown in the figure below:

q q q q q q q q q¤£ ¡¢ ¤£ ¡¢ ←→ 1 + 1 + 3 + 1 + 3

We will now look at patterns across columns. There are two particularly
simple patterns: 1) the upper triangle of 1’s; and 2) diagonals of slope -1
consisting of the same integer (from an appropriate starting point onwards).
Both of these patterns are the result of the initial conditions, as they cover
the cases 0 ≤ n < k and k ≤ n < 2k. For n ≥ 2k, we notice three additional
patterns: 1) pairs of repeated values (boxed); 2) diagonal sequences of
slope -2 containing consecutive integers (from an appropriate starting point
onwards), for example the sequence { 13, 14, 15, 16, 17,....} marked with a
?; and 3) sequences on diagonals of slope -3, whose terms have increasing
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k 2 3 4 5 6 7 8 9 10
n
0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
2 2 1 1 1 1 1 1 1 1
3 3 2 1 1 1 1 1 1 1
4 5 3 2 1 1 1 1 1 1
5 8 4 3 2 1 1 1 1 1

6 13 6 4 3 2 1 1 1 1
7 21 9 5 4 3 2 1 1 1

8 34 13 ? 7 5 4 3 2 1 1

9 55 19 10 6 5 4 3 2 1
10 89 28 14? 8 6 5 4 3 2

11 144 41 19 11 7 6 5 4 3

12 233 60 26 15? 9 7 6 5 4
13 377 88 36 20 12 8 7 6 5

14 610 129 50 26 16? 10 8 7 6

15 987 189 69 34 21 13 9 8 7
16 1597 277 95 45 27 17? 11 9 8

17 2584 406 131 60 34 22 14 10 9

Table 1: The number of (1, k)-compositions of n

differences, for example the sequence {21, 28, 36, 45, ...} (also in bold).
The following theorem makes these patterns more precise.

Theorem 3 1. For any k, C3k+2,k+1 = C3k,k.

2. For 2k ≤ n < 3k, Cn+2,k+1 = Cn,k + 1.
3. For 3k ≤ n < 4k, Cn+3,k+1 = Cn,k + n− 2k + 4.

Proof: 1. To show the first equality, we give a one-to-one correspondence
between the respective compositions. Since n = 3k, the (1, k)-compositions
of 3k can have either no k, one k, 2 k’s or 3 k’s, and the (1,k + 1)-
compositions of 3k+2 can have either no k+1, one k+1 or two (k+1)’s.
There is exactly one composition without any k or k + 1, respectively, the
composition of all 1’s. The compositions of 3k with exactly two k’s are
in one-to-one correspondence with those of 3k + 2 containing exactly two
(k+ 1)’s, as each k can be replaced by k+ 1. The compositions of 3k with
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exactly one k have 2k+1 summands, for a total of 2k+1 such compositions,
and there is only one composition of 3k that has exactly 3 k’s. These are
matched by the compositions of 3k + 2 with exactly one k + 1, of which
there are (3k + 2)− (k + 1) + 1 = 2k + 2. Below is an example illustrating
these correspondences for k = 2 and n = 6:

111111 ←→ 11111111 2211←→ 3311
21111 ←→ 311111 2121←→ 3131
12111 ←→ 131111 2112←→ 3113
11211 ←→ 113111 1221←→ 1331
11121 ←→ 111311 1212←→ 1313
11112 ←→ 111131 1122←→ 1133
222 ←→ 111113

2. For the second equality, we match up the two types of compositions in
the same way. Note however, that now there is no (1, k)-composition of n
with three k’s, thus there is no match for one of the (1, k+1)-compositions
of n+ 2 with exactly one k + 1.
3. We utilize the explicit formula for counting (1, k)-compositions, namely

Cn,k =
Pbn/kc

j=0

¡
n−j(k−1)

j

¢
. For 3k ≤ n < 4k, Cn,k =

P3
j=0

¡
n−j(k−1)

j

¢
, since

there can be at most three k’s in the (1, k)-compositions of n. Likewise, for
this range of values for n, there can be at most three (k + 1)’s in the (1,

k + 1)-compositions of n + 3, thus Cn+3,k+1 =
P3
j=0

¡
n+3−j·k

j

¢
. We now

just compare the different counts:

Cn,k = 1 + (n− k + 1) +
µ
n− 2k + 2

2

¶
+

µ
n− 3k + 3

3

¶
and (after simplification)

Cn+3,k+1 = 1 + (n+ 3− k) +
µ
n+ 3− 2k

2

¶
+

µ
n+ 3− 3k

3

¶
.

Comparing the respective summands, we see that the first and last ones are
identical, the second ones differ by 2, and the third summands are of the
form

¡
m
2

¢
and

¡
m+1
2

¢
, form = n−2k+2. Straightforward computation shows

that the difference between these two terms is m, and thus, Cn+3,k+1 =
Cn,k + 2 + n− 2k + 2, which gives the desired result. 2

When looking for patterns in the values for Pn,k, we need to distin-
guish between odd and even values of n, as they have different formulas.
Thus, the sequence {Pn,k}∞n=0 is the result of interleaving the two sequences{P2i+1,k}∞i=0 and {P2i,k}∞i=0. By Lemma 2, part 1, the subsequence for
which n 6≡ k agrees with the sequence for the number of (1, k)-compositions.
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Furthermore, Lemma 2, part 1 also provides for an easy means to com-
pute the generating function for the subsequence for which n ≡ k, since
Pn,k = Ci−j,k +Ci,k, where n = 2i or n = 2i+ 1 and k = 2j or k = 2j + 1.
Using standard methods for generating functions together with Lemma 1,
we get that the generating function for P̂i,k := P2i,k or P̂i,k := P2i+1,k is

given by GP̂ (x) =
1+xj

(1−x−xk) .
We have tested the sequences for k = 2, . . . , 10 in the Online Ency-

clopedia of Integer Sequences [5], both using the full sequences and the
subsequences for which n ≡ k. For k = 2, {Pn,2}∞n=0 consists of two inter-
leaved Fibonacci sequences, and the full sequence is also referenced in [5]
as A053602, with a recurrence of the form a(n) = a(n−1)− (−1)na(n−2),
where a(n + 1) = Pn,2. Thus we get the following two cases: Pn,2 =
Pn−1,2 + Pn−2,2 for n even, and Pn,2 = Pn−1,2 − Pn−2,2 for n odd. These
recurrences can be explained in terms of the (1,2)-palindromes by using an
alternative construction, namely modifying the middle summands rather
than the two ends of the palindromes. Note that for even n, the palin-
drome either has middle summand 2 or an even split; for odd n, the middle
summand always is a 1. We can create the (1,2)-palindromes for even n by
either increasing the middle summand of a (1,2)-palindrome of n−1 (which
gives middle summand 2), or by modifying the center of a (1,2)-palindrome
of n−2, inserting either 1+1 into those with an even split, or replacing the
middle summand of 2 by 2 + 2. Thus, Pn,2 = Pn−1,2 + Pn−2,2 for n even.
If n is odd, then we get the (1,2)-palindromes of n by inserting a 1 into
the center of those (1,2)-palindromes of n− 1 that have an even split. The
number of (1,2)-palindromes of n− 1 that have a 2 in the center (and thus
need to be subtracted) were created by increasing the middle summand of
the palindromes of n− 2 by 1. Thus, Pn,2 = Pn−1,2 − Pn−2,2 for n odd.
For k ≥ 3, none of the full sequences are listed in [5]. Of the subse-

quences with n ≡ k, only the sequence for k = 3 is listed in [5], as A058278,
with P2i+1,3 = a(i+ 2).
When looking for patterns across columns, there are several ways to

arrange the tables of values. One can look at the complete table of values,
which would not show patterns as easily due to the interleaving of the two
subsequences that have different formulas. If one looks at the subsequences
for odd and even n separately, then there are two choices: 1) making sepa-
rate tables for sequences in which n ≡ k and n 6≡ k, or 2) making separate
tables for the odd and even values of n. We have looked at both choices,
and the patterns that arise are similar to the case for (1, k)-compositions.

4. Rises, levels and drops in (1, k)-compositions

Alladi and Hoggatt have counted the number of rises, levels and drops
for (1,2)-compositions and (1,2)-palindromes [1]. We will now look at the
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general case. Since for each non-palindromic (1, k)-composition a corre-
sponding (1, k)-composition in reverse order exists, any rise will be matched
by a drop and vice versa. In (1, k)-palindromes, symmetry provides for the
match within the palindrome. Furthermore, each “+”-sign corresponds to
either a rise, a level, or a drop, and therefore

rn,k = dn,k and C
+
n,k = rn,k + ln,k + dn,k. (1)

Likewise, these formulas hold for (1, k)-palindromes. We first give the re-
sults for (1, k)-compositions.

Theorem 4 1. For n > k, rn,k = rn−1,k+rn−k,k+Cn−k−1,k, with rn,k = 0

for n ≤ k, and generating function Gr(x) =
P∞
k=0 rn,k · xn = xk+1

(1−x−xk)2 .
2. For n > k, ln,k = ln−1,k + ln−k,k + Cn−2,k + Cn−2k,k, with ln,k = n− 1
for n ≤ k, and generating function Gl(x) =

P∞
k=0 ln,k · xn = x2+x2k

(1−x−xk)2 .

Proof: For n < k, the only (1, k)-composition of n consists of all 1’s,
and if n = k, there is an additional composition consisting of only k. In
either case, no rises occur. If n > k, then we look at the creation of the
compositions of n from those of n − 1 and n − k. If a 1 is added, no new
rises occur. If a k is added, then additional rises are created if the (1, k)-
composition of n − k ends in 1. These are exactly the (1, k)-compositions
of n− k − 1, and one new rise is created for each of these, which gives the
recursion. To get the generating function, we multiply each term in the
recurrence relation by xn, then sum over n ≥ 0. (Note that the recurrence
relation is also valid for n ≤ k, since all terms are equal to zero.) Expressing
the series in terms of Gr(x) and GC(x) and using Theorem 1 leads to

Gr(x) =
xk+1GC(x)

(1− x− xk) =
xk+1

(1− x− xk)2 .

The formula for the levels follows from a similar argument. For n ≤ k,
levels occur only in the (1, k)-compositions of all 1’s, and there are n − 1
of those. When creating (1, k)-compositions of n from those of n − 1 and
n − k, additional levels are created when adding either a 1 to a (1, k)-
composition of n − 1 ending in 1, or adding a k to a (1, k)-composition of
n− k ending in k. There are Cn−1−1,k + Cn−k−k,k new levels, which gives
the recurrence relation. Using Eq. 1, the generating functions is computed

as Gl(x) = GC+(x)− 2Gr(x)= x2+x2k

(1−x−xk)2 . 2

We now derive the corresponding results for (1, k)-palindromes. As be-
fore, the initial conditions depend on the parity of n and k. Recall that
n ≡ k denotes n and k having the same parity.
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Theorem 5 1. For n ≥ 2(k + 1), r̃n,k = r̃n−2,k + r̃n−2k,k + 2Pn−2(k+1),k,
with initial conditions

r̃n,k =


0 for n ≤ k
1 for k < n ≤ 2k, n ≡ k
0 for k < n ≤ 2k, n 6≡ k
2 for n = 2k + 1, n ≡ k
1 for n = 2k + 1, n 6≡ k

,

with Gr̃(x) =
P∞
k=0 r̃n,k · xn =x

k+1(x−x3+xk−x3k+2xk+1+xk+2+x2k+1)
(1−x2−x2k)2 .

Proof: As in the case of (1, k)-compositions, there are no rises for n ≤ k.
For n < k < 2k, the (1, k)-palindromes either consist of all 1’s, or can have
one occurrence of k, which must be in the center. For this to occur, n and
k need to have the same parity, and then there is one rise. If n = 2k, we
get the additional palindrome k + k, which does not have a rise. Finally,
for n = 2k + 1, we get either all 1’s, or the palindrome k + 1 + k, and,
if n and k have the same parity, the palindrome with a k at the center,
combined with all 1’s. The recurrence relation is derived similarly to the
proof of Theorem 4. When adding a 1 to the (1, k)-palindromes of n − 2,
an additional rise occurs on the left side of those (1, k)-palindromes which
end in k, of which there are Pn−2−2k,k. Likewise, one additional rise occurs
on the right side when adding k on both sides of the (1, k)-palindromes of
n− 2k which end in 1, of which there are Pn−2k−2,k.
To compute the generating function, we define P̂n,k as Pn,k for n ≥ 0, and
P̂−1,k = P̂−k,k = 1/2. Note that GP̂ (x) = GP (x) +

1
2x
−1 + 1

2x
−k. We will

show that r̃n,k = r̃n−2,k + r̃n−2k,k + 2P̂n−2(k+1),k for all n. It is clear that
this recurrence relation holds for n > 2k + 1, and we need to check that
it also holds for n ≤ 2k + 1. The following table gives the values for the
different cases:

case n parity r̃n,k r̃n−2,k r̃n−2k,k P̂n−2(k+1),k
1 ≤ k 0 0 0 0
2 k + 1 (opp) 0 0 0 0
3 k + 2 (same) 1 0 0 1/2
4 k + 2 < n ≤ 2k same 1 1 0 0
5 k + 2 < n ≤ 2k opp 0 0 0 0
6 2k + 1 same 2 1 0 1/2
7 2k + 1 opp 1 0 0 1/2

It now becomes clear why we made the definition P̂−1,k = P̂−k,k = 1/2.
Note also that for cases 4 and 5, −k < n−2(k+1) ≤ −2. Multiplying each
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term in the recurrence relation by xn, then summing over n ≥ −k, we getX
n≥−k

r̃n,k · xn = x2
X
n≥−k

r̃n−2,k · xn−2 + x2k
X
n≥−k

r̃n−2k,k · xn−2k

+2 · x2(k+1)
X
n≥−k

P̂n−2(k+1),k · xn−2(k+1).

Since r̃n,k = 0 for n ≤ 0,

Gr̃(x)(1− x2 − x2k) = 2 · x2(k+1)GP̂ (x),

which after simplification gives the result. 2
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