%I M0883 #37 Oct 06 2017 22:04:58
%S 1,2,3,8,19,65,84,485,1054,24727,50508,125743,176251,301994,16785921,
%T 17087915,85137581,272500658,357638239,630138897,9809721694,
%U 10439860591,103768467013,217976794617,1193652440098,8573543875303
%N Numerators of convergents to log_2(3) = log(3)/log(2).
%D R. K. Guy, personal communication.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A005663/b005663.txt">Table of n, a(n) for n=0..200</a>
%H R. E. Crandall, <a href="http://dx.doi.org/10.1090/S0025-5718-1978-0480321-3">On the 3x+1 problem</a>, Math. Comp., 32 (1978) 1281-1292.
%H E. G. Dunne, <a href="/DUNNE/TEMPERAMENT2.html">Pianos and Continued Fractions</a>
%H E. G. Dunne, <a href="/A005663/a005663.html.txt">Pianos and Continued Fractions</a>
%H R. K. Guy, <a href="/A005663/a005663.pdf">Letter to N. J. A. Sloane, 1977</a>
%H Eric Weisstein's World of Music, <a href="http://www.ericweisstein.com/encyclopedias/music/CommaofPythagoras.html">Comma of Pythagoras</a>
%e log_2(3) = 1.5849625007211561814537389439...
%t Numerator[Convergents[Log[2,3],30]] (* _Harvey P. Dale_, Sep 10 2015 *)
%o (PARI) a(n) = component(component(contfracpnqn(contfrac(log(3)/log(2), n)), 1), 1) \\ _Michel Marcus_, May 20 2013
%Y Cf. A005664, A028507, A020857.
%K frac,easy,nonn
%O 0,2
%A _N. J. A. Sloane_
%E More terms from _James A. Sellers_, Sep 16 2000