This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005639 Number of self-converse oriented graphs with n nodes. (Formerly M1518) 3
 1, 2, 5, 18, 102, 848, 12452, 265759, 10454008, 598047612, 63620448978, 9974635937844, 2905660724913768, 1268590412128132389, 1023130650177394611897, 1258149993547327488275562, 2834863110716120144290954314, 9900859865505110360978721901778 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976. R. W. Robinson, Asymptotic number of self-converse oriented graphs, pp. 255-266 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Andrew Howroyd, Table of n, a(n) for n = 1..50 (terms 1..27 from R. W. Robinson) R. W. Robinson, Asymptotic number of self-converse oriented graphs, pp. 255-266 of Combinatorial Mathematics (Canberra, 1977), Lect. Notes Math. 686, 1978. (Annotated scanned copy) Sridharan, M. R., Self-complementary and self-converse oriented graphs , Nederl. Akad. Wetensch. Proc. Ser. A 73=Indag. Math. 32 1970 441-447. [Annotated scanned copy] See page 446. PROG (PARI) permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} edges(v) = {sum(i=2, #v, sum(j=1, i-1, if(v[i]*v[j]%2==0, gcd(v[i], v[j])))) + sum(i=1, #v, if(v[i]%2==0, (v[i]-2)\4*2+1))} a(n) = {my(s=0); forpart(p=n, s+=permcount(p)*3^edges(p)); s/n!} \\ Andrew Howroyd, Sep 16 2018 CROSSREFS Cf. A002785. Sequence in context: A322396 A007127 A279207 * A093730 A304918 A007769 Adjacent sequences:  A005636 A005637 A005638 * A005640 A005641 A005642 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 00:10 EST 2019. Contains 319404 sequences. (Running on oeis4.)