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Tandem Networks of Universal Cells

JON T. BUTLER, MEMBER, IEEE

Abstract—The tandem network, a row-like interconnection of
cells is described. Such networks are more general than the widely
studied irredundant cascade, but less general than a universal
network based on, for example, the Shannon decomposition. The
analysis is facilitated by the introduction of three cell-network
interconnections, whose functions are characterized by certain attrib-
utes of the partition matrix of the realized function. Partition
matrices have been used to significant advantage in characterizing
disjunctive decompositions. They are also important in the analysis of
nondisjunctive decompositions, but their application is cumbersome
in such cases. It is shown that certain nondisjunctive decompositions
can be handled easily as operations on partition matrices. A counting
technique is developed which shows that the number of functions
realized by tandem networks is significantly larger than that realized
by cascades. In addition, a synthesis technique is shown for construct-
ing a tandem network to realize a given function.

Index Terms—Cascades, disjunctive decomposition, disjunctive
networks, networks of flexible cells, nondisjunctive decompositions,
tandem networks.

1. INTRODUCTION

URING the past fifteen years considerable effort has
been devoted to the study of combinational networks of
flexible cells. The cascade or TRIB [1], [2] has been widely
studied, and within the past several years, the more general
tree or disjunctive net [3]-[6] has been examined. Except for
a few instances, however (e.g., [7]), little work has been done
on other cell interconnections. Studies of more general
networks are important because it has been shown [8],
[12]-[14] that the fraction of functions realized by irredun-
dant cascades and by irredundant disjunctive nets is very
small even for moderate sizes (4 or more inputs). Even for
redundant cascades, cascades in which a single input can
drive more than one cell, the fraction of realizable functions
approaches 0 as the number of inputs grows arbitrarily [9].
In this paper, properties of a new interconnection, the
tandem net, are presented. The tandem network is a special
case of the redundant disjunctive network, but is more
general than the irredundant cascade. In particular, it is
shown that a tandem network realizes significantly more
functions than a similar cascade. The increase in function
count comes at the expense of approximately three times as
many cells. The analysis and synthesis of tandem networks is
based on the properties of functions realized by three
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cell-network interconnections, discussed in the following
sections.

II. CELL-NETWORK INTERCONNECTION # 1—N,

Consider the x, - x,_, | x, partition matrix' of a func-
tion f(xy, x,, ", X), as shown in Fig. 1, where C, and C,
represent the x, = 0and x, = 1 columns, respectively.? Let0
and 1 represent the columns of allO’s and all 1’s, respectively.
Let X denote a column with at least one 0 and at least one 1,
and X its complement. The concatenation of two columns
will represent a complete partition matrix. Thus, for exam-
ple, 01 represents f (x,, x,, -+, x;) = x,and X X representsa
function independent of x,, but dependent on at least one of
the remaining variables.

For the cell-network interconnections to be analyzed, itis
convenient to classify realized functions according to Table
I. Note that if f(x,, x,, **, X,) is realized by a network of
universal cells, so also is the complement function f(x,,
x,, =**, %) (add an inverter to the output). Thus, if a Type D
function, say 0X, is realized, so also is 1X. Furthermore, if

x4, x4, -7, x,)is realized, so alsois f (x, X, *- -, X,) (add an
inverter to input x, ). Thus, if 0X is realized, so also is X0. As
a result, Type D functions occur as a group of four, 0X, X0,
1.X, and X 1. That is, if one member of the group is realized
by some network N, all members are realized by N. Note
that the “dual” group of four 0X, X0, 1X, and X1 may or
may not be realized. For the analysis to follow, it is
convenient to subdivide Type D functions into two groups,
Type D1 and D2. If 0X, X0, 1X, X 1, is realized but the dual
group is not, the four realized functions are said to be Type
DI. If0X, X0, 1X, X1,0X, X0, 1X,and X1 are all realized,
the eight functions are said to be Type D2.

Type E functions have the form XY, where X # Y and
X + Y, and aredivided into two groups. In particular,if X' Y,
XY, YX, and YX only are realized, each of the four is
classified as Type EI. On the other hand, if XY, XY, XY,
XY, YX,YX, YX,and YX are realized, they are all Type E2
functions.

Lemma 4 of [5] shows that the trivial functions 00 (f = 0)
and 11 (f= 1) are realized by all nets, as are functions on a
single variable, 01 (f = x,) and 10 (f = x,). Thus, the four
Type A functions are realized by all nets of universal cells.

! For a discussion of partition matrices see Curtis [10].

2 Alternatively one could consider the Shannon decomposition about
X (X4, X0y %) =% f(xy, x5, 00 0) + x, f{xy, x5, -, 1) but the
partition matrix is used for ease of representation.

0018-9340/78/0900-0785%00.75 © 1978 IEEE
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Fig. 1. The x, '~ x,_, | x, partition matrix.

TABLE 1
CLASSIFICATION OF FUNCTIONS

Type Form of Partition Matrix

00, 01, 10, 11

XX and XX

XX and XX

0X, X0, 1X, X1

0X. X0, 1X, and X1 are realized
but not 0X, X0, 1X, and X1

0X, X0, 1X, X1, 0X, X0, 1X,
and X1 are all realized

E XY, X+ Yand X #Y ~ -
El XY and XY are realized but not XY and XY
E2 XY, XY, XY, and XY are all realized

[~ Rl =S

D1

D2

For the remaining functions, however, net structure deter-
mines how many of each type are realized.

The first cell-network interconnection to be considered is
shown in Fig. 2. The functions realized by N, the overall
network, can be viewed as the set of functions realized by M
operated on by the set of functions realized by Cell 1. For
example, if M realizes XY, a Type E function, and Cell 1
realizes ax,, N, realizes 0Y, a Type D function. The opera-
tion, in this case, is to make the x, = 0 column all 0’s and to
complement the x;, = 1 column. In all, the sixteen functions
realized by Cell 1 correspond to every.combination of the
operations shown in Table II on the two columns in the
partition matrix. Since there are 2 columns, there are
2* = 16 different combinations of operations, each corre-
sponding to a function realized by Cell 1.

Consider by type the functions realized by the overall
network N,. All Type 4 functions are, of course, realized.
Type B and C functions are realized only when M realizes a
function corresponding to operations 3 and 4 exclusively.
Furthermore, Type B and C functions can be viewed as
ansing from Type B functions only. To illustrate this,
suppose M realizes XX, a Type C function, and Cell 1
realizes the coincident product, a © x,.> Thus, N, realizes
XX. However, from Lemma 3 of [5], if a network of
universal cells realizes f (x,, x,, **-, x,), it also realizes f (x ,
X3, =**,0). Thus, M must also realize X X. But for this case, if
Cell 1 realizes a, N, also realizes X X.

The number of Type B functions realized by M ism — 2,
where m is the number of functions independent of x,. Each
function, in turn, gives rise, under operations 3 and 4, to four

* The coincident product a O b is given as,
a®b=ab + ab.
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Fig. 2. Cell-network interconnection # (N ).

TABLE 11
OPERATIONS ON COLUMNS IN THE PARTITION MATRIX

Set all entries in the column to 0
Set all entries in the column to 1
Complement the column

Leave the column unchanged

£ L N —

functions XX, XX, XX, and XX. However, XX will
produce this set of four, and by Lemma 1 of [5], M also
realizes X X. Thus, there are a total of 2(m — 2) functions of
the form XX, XX, XX, and X X. Of these, one halform — 2
are Type B and m — 2 are Type C.

Type D functions can arise in a number of ways, all of
which require that M realize a function with at least one
nontrivial column. By an argument similar to that for Type
B and C functions, it is seen that the Type D functions 0X,
X0, 1X, and X1 can be generated by Operations 1 and 2,
where X X is a Type B function realized by M. Thus, there

are 4(m — 2) Type D functions. These are all Type D2 |

because X X, which is also realized by N, produces 0.X, X0,
1X, and X1. These have already been included in the count
4(m — 2), since the m — 2 Type B functions realized by M
include both X X and XX.

A Type E function can only be realized by cell-network
interconnection # 1 when M realizes a Type E function. If M
realized a Type E2 functions, the operations of Cell 1
produce no new Type E functions. However, if M realizes a
Type E1 function XY (and XY), then operations 3 and 4
produce the four functions XY, XY, XY, and XY. These
operations, in effect, convert the Type E1 functions realized
by M into Type E2 functions.

Thus, we have the following result.

Theorem ] : The functions realized by cell-network inter-
connection #1, N, are as follows.

Type A: 00, 04, 10, 11
Type B: XX, XX

Type C: XX, XX

Type D1: None

Type D2: 0X, X0, 1X, X1
Type E1: None

Type E2: XY, XY, XY, XY

where X X and XY are Type Band E functions, respectively,
realized by M.

Note that functions realized by N , which are independent
of x, are precisely the functions realized by M which are
independent of x,. This observation and Theorem 1 yield the
following,

J
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Lemma 1: Let r; and r; be the number of Type i functions
realized by cell-network interconnection #1, N,, and M
(the subnetwork), respectively. Let m' and m be the number
of functions realized by N, and M, respectively, which are
independent of x,. Then

ry=4
rg=m-—2

— _I
re=m-—2=rjy

rpy =4(m — 2) = 4rj
e, =0
Fea = 2rgy + reg,
and the total number of functions realized by N, is
n=2rg, + rg, + 6m—38.
Furthermore,
m =m. 9)

This result shows that cell-network interconnection # 1
realizes, in general, more functions than the subnetwork M.
An exception is the case where M is also a cell-network
interconnection # 1. In this interconnection, the two univer-
sal cells combine to form a two-input one-output network.
- But all the functions realized by this are realized by a single
universal cell.

It is interesting to compare the results of Theorem 1 to the
case where x, of Fig. 1 connects only to Cell 1. From [5], the
number of functions #n” of such a network is

n"=6m-—_8

comparing this with (8) shows that the additional functions
realized by cell-network interconnection #1 stem from
Type E functions realized by M.

ITI. CELL-NETWORK INTERCONNECTION #2—N,

The cell-network interconnection to be considered in this
section is shown in Fig. 3. As with cell-network inter-
connection # 1, it is useful to view the functions realized by
the overall network, N,, as the result of operations on
functions realized by subnetwork, M. The x,_, -~ x| x,;
partition matrix of a function realized by M is shown in Fig,
4. Since x, is not a primary inputto M, the x, = Oand x, = 1
columns are identical.

The operations involved are those listed in Table II. In
particular, Cell 1 determines which pair (of the 16 possible)
of operations are involved and Cell 2 determines how they
are distributed over the four columns in Fig. 4. As an
example, if Cell | realizes the exclusive OR function, then
operations 3 and 4 of Table II are involved. If Cell 2 realizes
Xy-1Xg, then the three columns corresponding to
X, — 1 X, =00, 01, 10 remain unchanged while the column
X, -1 X = 11 1s complemented. Thus, if Fig. 4 1s the matrix
realized by M, the overall network realizes
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Fig. 3. Cell-network interconnection #2(N,).

Fig. 4. Partition matrix of a function realized by M.

XX
Yy

Consider by type the functions realized by N,.
Type B Functions

Type B functions occur when Cell 2 realizes a function
independent of x,;, while M and Cell 1 range over their
realizable functions. Since Cell 1 is universal, the four
functions independent of x, realized by Cell 2,0, 1, x,, and %,
add no more functions than if Cell 2 realized just x,, and the
functions realized by N, which are independent of x, are
precisely those realized by the cell-network interconnection
# 1. Of these, two g9 and ], are Type A. The remaining
are Type B. Thus, from Lemma 1,

rleerl +r52+6m_ 10.

Furthermore, m’, the number of functions realized by cell-
network interconnection 2 which are independent of x,, is

m =rg+ 2

Type C Functions

Type C functions are realized in a variety of ways. Table
IIT shows the combinations of functions realized by M which
produce distinct Type C functions. All such functions occur
when Cell 1 realizes the exclusive OR or coincident product
function. Note that Type D2 functions realized by M
produce twice as many Type C functions per source function
as do Type D1 functions, because the operations, in effect,
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TABLE HI
TyPE C FUNCTIONS REALIZED BY
CELL-NETWORK INTERCONNECTION # 2 ’
Number of Form of
Entry Functions Realized Type C Functions Number
Number M Realizes by M Realized by N, Realized
XX XX xx
1 XX (Type B) m—2 XX XX 2(m—2)
XX XX XX
2 11 (Type D1) ot 10 10 2rp,
XX XX
3 11 (Type D2) 2 10 ~ b2
XX XX XX
4 YY (Type El) re1 YY vy 2rg,
XX XX
5 YY (Type E2) rea YY Fes
11 01 10
6 00 (Type A) 2 10 01 2
TABLE 1V

Tyre D FUNCTIONS REALIZED BY CELL-NETWORK INTERCONNECTION # 2

Entry Function Cell 1 Number of Type D Type
Number Realized by M* Realizes Form of Type D Realized Functions Produced Realized
XX X0 00 0X 00
1 XX (Type B) a b 00 X0 00 0X 4m—2)— 2rp, — rpp D1
XX X0 00 0X 00
2 XX (Type B) a-b 00 X0 00 0X 2rpy + Iy, D2
XX X1 11 1x 11
3 XX (Type B) a+b 1 Xt 1 o1x 4(m —2)— 2ry, — g D1
XX X1 11 1x 11
4 XX (Type B) a+b 1 X1 1 1x 2y + Tos D2 J
XX . X0 0X
5 XX (Type B) a b X0 0X 2Am = 2) D2
XX X1 1X
6 XX (Type B) a+b X1 1X 2(m = 2) D2
01 10 00 00 01 10
7 01 10 (Type A) a-ba+b 01 10 00 00 8 D2
10 01 11 11
11 11 10 01
XX 00 X1 1X 01 10
3 00 XX (Type D) a bya+b 01 10 X1 1X 2rp, + 2rp, D2
XX 11 X0 0X 10 01
11 XX 10 01 X0 0X
XX X0 0X X1 1X
9 Yy (Type E) a-ba+b YO 0y Y1 1Y dre, + 4rg, D2
XX X0 0X X1 1X
10 XX (Type C) a-b,a+b X0 0X X1 1X ar. D2

* The function types specified for the functions realized by M are with respect to x,_,. Thus, {{ is a Type D function
with respect to x,, (but a Type B function with respect to x,).

convert Type D1 functions to D2. A similar statement is true ror = —4rp; — 2rp; + 8(m —2)

of Type E functions, also. Totaling the functions in Table I11 ,

yiclgf g rpy =4rc + 6rpy +4rp, + 4rgy + 4rg, + 4m.
re=2rpy + rpy + 2rg; + rgy +2m — 2. Type E Functions

The combinations of functions realized by subnetwork M

and connecting cells which produce Type E functions are
Type D lunctions are also tabulated by examining the shown in Table V.

Type D Functions

combinations of functions types realized by M and opera- The total number of functions realized is )
tions on the partition matrices of such functions. Table IV 12 4 12 12 2 5
shows the combinations which result in Type D functions. res = 12rc + drpy + 12rgy + 12rg; + 12(m — 2)

The number of functions realized by type is re, = 4rpy + 6rpy + 4rgy + 2rg, + 4(m — 2).
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TABLE V
Type E FUNCTIONS REALIZED BY CELL-NETWORK INTERCONNECTION # 2

Entry Function Cell 1 Number of Type E Type
Number Realized by M Realizes Form of Type E Function Functions Realized Realized
XX 0X X0 0X X0 XX XX
1 XX (Type B) ab X0 0X XX XX X0 0X 12(m - 2) El
X X1 1X X1 XX XX
a+b X1 1X XX XX X1 1X
XX XX XX XX XX
2 XX (Type B) a@b XX XX XX XX 4(m — 2) E2
XX 0X X0 0X X0 XX XX
3 XX (Type C) a-b X0 0X XX XX X0 0X 12rc El
1X X1 1X X1 XX XX
a+b X1 1IX XX XX X1 1X
XX 0X X0 X0 0X
4 11 (Type Di) a-b 11 11 01 10 4rp, El
YY 1Yy Yl Y1 1Y
00 (Type D1) a+b 00 00 10 Ol
XX 0X X0 X0 0Xx
s 1t (Type D2F a-b 11 11 01 10 4rp, E2
YY 1Y Y1 Yl 1Y
00 (Type D2) a+b 00 00 10 01
XX XX XX XX XX
6 00 (Type Dy a®b 01 10 00 00 drp, + 2, E2
XX XX XX XX
10 01 11 11
XX XX XX Xx xX
7 YY (Type E) a®b YY YY YY YY 4re, + 2rg, E2
XX XX xx Xx
YY YY YY YY
XX 0X X0 0X X0 XX XX
8 YY (Type E) a b YO OY YY YY YO 0OY 12(re, + rea) El
1X X1 1X X1 XX XX
a+bh Yl 1Y YY YY Yl 1Y

* The functions which are produced by N, from Type D functions realized by M of the form } and 3% are not
shown for the sake of compactness.

Collating the results derived so far yields the following.
Lemma 2: The number of functions realized by N,,
cell-network interconnection #?2 by type is

r,=4

rIBZZrE‘+rE2+6m_10

Ye=2rp, + rpy + 2rg, + rg; +2m — 2

rpy = —4drp, — 2rp, + 8m — 16
Yoy =48rc+ 6rpy + 4rp, +4rg, + drg, +4m

Py = 12rc 4 drpy 4+ 12rg, + 12rg, + 12m — 24

Fes =4rpy + 6rpy + drgy + 2rpy, +4m — 8

for a total n" of

W= 16rc + 12rp, + 9rpy + 24rg; + 201, + 36m — 56

functions. Also,

m = 2rg, + rg, + 6m—28

(17)

(18)

where r; and r; are the number of Type i functions realized by
N, and M, respectively, and where m’ and m are the number
of functions realized by N, and M, respectively, which are
independent of x,_, and x,, respectively.

IV. AnaLYSIS OF FUNCTIONS REALIZED
BY TANDEM NETWORKS

Fig. 5 shows cell-network interconnection #3 which is

composed of a subnetwork M and three cells. This network
is a combination of cell-network interconnections # | and
#2 and the number of functions realized can be calculated
easily by substituting (15), (16), and (18) into (1)-(9). Thus,
the following is derived.
Lemma 3: The number of functions realized by N,
cell-network interconnection #3 by type is
ry=4 (19)
r/B = m’ - 2 (20)
Fe=Tg (21)
"oy =0 (22)
Fpg = 4rg (23)
rgy =0 (24)

Feo = 24rc + 12rp, + 6rp, + 28rg, + 26rg, + 28m — 56

(25)
for a total n’ of
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Fig. S.

Cell-network interconnection # 3(N;).

n = 24rC + lzrDl + 6rD2 +40rE1 + 32rE2 + 64m - 112
(26)
functions. Also,

m =2rg, +rg; +6m—8 (27)
where r; and r; are the number of Type i functions realized by
N, and M, respectively, and where m’ and m are the number
of functions realized by N, and M, respectively, which are
independent of x, and x, _,, respectively.

The tandem network, a row-like interconnection of
universal cells, has as a basic unit, the three-cell structure of
cell-network interconnection #3. In particular, a k-input
tandem network, as shown in Fig. 6, has k — 2 three-cell
units connected iteratively to a single universal cell: Lemmas
2 and 3 can be used to derive an expression for the number
of functions realized by tandem networks as follows.

Theorem 2: The number of functions ri(k) of Type i
realized by a k-input tandem network is

rak)=4 (28)

ra(k) = rc(k) = m(k) - 2 (29)

ro(k) =0 (30)

rpa(k) = 4m(k) — 8 (31)
redk)=0 (32)
reak) = Cylay — 6)k + C 2oy — 6)ay + 132 (33)

for a total n,,, (k) of

Naalk) = Cra* ! + Crob* ! + 48 (34)

where m(k), the number of functions realized by a k-input
tandem net which are independent of x, is

mk) = ng (k= 1) (35)
and where
— 1202 + 363, /11 1202 + 363,/11
Cl = - 3 CZ -
1960, /11 1960./11
oy =16 + 4, /11, 2, =16~ 4/11.

N
) jeelad

r
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Proof: For a two-input tandem net (a single universal
cell) we have

ra2)=4, rs(2) =2, re(2) =2,
rp1(2) =0, rp2(2) =8, red(2) =0,
ra@)=0,  m2)=4

The values for other k can be found by the successive
application of (19)-(25) and (27)to the initial values given by
above. Since for both sets of equations, r gk) = m(k) — 2 and

rey(k) = 0, two simultaneous independent recurrence equa-
tions result. These are

res(k) = T6m(k — 1) + 26re(k — 1) — 152 (36)

m(k) = 6m(k — 1) + rgo(k — 1) — 8. (37)

Solving (36) and (37) for their closed form solutions with
the initial conditions of r¢,(2) = 0 and m(2) = 4 yields, upon
substitution into (19)-(27), the desired result. Q.ED.

Table VI shows the number of functions, n,,,(k), realized
by k-input tandem nets as given by (34). Also shown is the
number of functions, n_,/(k), realized by a k-input cascade
Meus(k) = (2 6* + 8)/5 (from [1]). As the table entries show,
tandem nets realize significantly more functions than
cascades. In fact,

neslk) _

Mialk)

Because a k-input cascade is imbedded in a k-input tandem
net, the functions realized by the latter include all those
realized by the former. The additional functions are
produced at a cost of approximately three times the number
of cells.

It is of interest to consider the number of k-variable
functions N, (k) which are realized by at least one tandem
network. Note that n,,(k) is the number of functions
realized by a single tandem network of k variables. An upper
bound for N,,.(k) is

Iim -

k—

Nian(k) < k! nigo(k),

since a tandem network with a specific assignment of labels
to the inputs realizes n,, (k) functions and there are k! ways
to make such an assignment. This is a strict upper bound
because the AND of all variables is realized by all k!
networks. Comparing the upper bound with the total
number of functions on k variables N, = 22* as k becomes
arbitrarily large yields

With respect to three variables, Table VI shows that 240
functions are realized by a single cascade. One then wonders
about the remaining 16 functions. All of these, it turns out,
are realized by other tandem networks. Thus, all three-input
functions are tandem network realizable.

L o

J
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TABLE VI

NUMBER OF FUNCTIONS REALIZED B
AND [TANDEM NETS OF k

Pu

CASCADES
pUTS

\ -
k nul)r™y
p 2 16

3 | 88
4 520 X
5 / 3,112 187,184
6 [ 18,664 5,474,096
7 111,976 160,196,400
8 671,848 4,688,357,168
9 4,031,080 137.211,717,424

10 24,186,472 4015,706,384,176

L_—

V. SYNTHESIS OF TANDE

The synthesis problem is stated as follows. Given a k
variable function f(X), where X = {x,, x,, "'+, x,}, assign
functions to each cell in a k-input tandem network so that
S(X) is realized. Part of the problem in developing an
economical algorithm is that a typical tandem function is
realized in many ways. For example, the AND of k variables
can be realized by a k-input tandem net in which all cells
realize the two-input AND. It can also be realized by a
cascade of AND gates, which is a tandem network where
certain cells realize trivial functions. It is convenient, there-
fore, to introduce the canonical tandem network, which has
the property that any function realized by an arbitrary
tandem network is realized by a canonical network. As a
result, it 1s only necessary to synthesize the canonical
network. In the discussion to follow the canonical form is
specified by six conditions.

Cells in a tandem network N are classified as follows:

Type 1: Both inputs connect to network inputs,

Type 2: One input only connects to a network input, and

Type 3: Both inputs connect to the outputs of other cells.

Let C, the cascade of N, denote the set of Type 2 and 3
cells. The structure of a tandem network N imposes a
precedence on network inputs. That is, x; precedes x; if x;
labels an input which is higher than x;. For example, in Fig.
6, x, precedes x,, x, precedes x;, etc.

Since each cell in the network can realize any of the 16
functions on two vartables, trivial functions are possible. For
example, Fig. 7(a) shows a network in which several cells
realize trivial functions. In such cases, it will be convenient to
eliminate redundant cells. Fig. 7(b) shows the network of
Fig. 7(a) with redundant cells removed. In the networks to
be considered from now on all cells will realize functions
dependent on both inputs. The term gate will be used to
denote such cells. 7

There are three basic two-input one-output functions, the
AND, OR, and exclusive or. All other functions on two
variables can be realized from these by adding inverters to
appropriate inputs. For the networks to be considered, it is
important that only AND, OR, and exclusive OR gates occurin
the cascade. If the output of an AND or OR gate in the cascade
connects to the input of another gate in the cascade through
an inverter, the inverter can be removed by applying de
Morgan’s theorem. For example, Fig. 7(c) shows the

§6[7 Vst ,amwot:f{/v
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Fig. 6. A k-input tandem net.

network of Fig. 7(b) with all such inverters removed. When
exclusive OR gates are involved, an inverter at the output can
be transferred to one of the inputs. Thus, a tandem network
with only AND, OR, and exclusive OR gates in its cascade isno
less general than an unrestricted tandem network. We have
the following.

Condition 1: The cascade of a canonical tandem network
consists only of AND, OR, and exclusive OR gates.

Because of this condition, the cascade of a canonical
network will consist of a string of AND, OR, or exclusive OR
gates, followed by a string of gates of a different type, etc. The
synthesis algorithm will test at each step for strings of each

gate type.

Cascades of AND or OR Gates Whose Inputs
are Network Inputs Only

Let f(X) = f(x,, x,, ", x,) denote a function dependent
on k variables. x; 0-masks x; if f (X |0 — x;)* is independent
of x ;. Similarly, x, I-masks x ;if f (X | 1 - x;)is independent of
x . X, is said to mask x ;if it 0-masks or 1-masks x;.° Note that
x; masks itself.

The masking relation can be extended to sets of variables
in a natural way. Let Z < X. Then x; O(1)-masks Z if x;
0(1)-masks x;, for all x; € Z. Let Z, = Z, the dominating set
of Z, denote the set {x }, where x; € Z and x; masks Z. As an
example, consider the function realized by the networks in
Fig. 7

Sy, X2, X3, Xa, Xs) = (X1 + X3)%,X5 + Xg %5 + X, Xs.
Here,
x, 0-masks {x,} and 1-masks Z, = {x,, x5},
and l-masks Z, = {x,, X,, X3},

fih. /.
X X35,

1

{xd}
x, 0-masks {x,}
x5 0-masks {x;} and 1-masks Z,
!

x4 O-masks {x,} and 1-masks {x,},

and x5 O-masks Z; = {x,, x,, X3, X5} and 1-masks {xs}.
The dominating sets of Z,, Z,, and Z, are respectively
Zy =2, Z4 =1{x,}, and Z,;3 = {xs}. It is interesting to

* f(X|a— x,) denotes the function f{X) with all occurrences of x;
replaced by a.

5 The masking relation is the same as that used to synthesize fanout-free
networks of AND’s, OR’s, and inverters [11].



792

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-27, NO. 9, SEPTEMBER 1978

Fig. 7.

note in Fig. 7(c) that an input to an AND or OR gate in the
cascade masks itself and at least one other input. This
observation indicates a method by which certain inputs to a
tandem network can be identified.

Lemma 4: 1f x; connects to a Type 2 gate which realizes
a*b* or a* + b*, then x; need not connect to a Type 1 gate
which connects to any input preceding x;, where a and b are
the Type 2 gate inputs and a* = a or a.

Proof: The proof is the same as that for a similar
statement about redundant cascades [2, lemma 3, p. 854].
' QED.

With respect to Fig. 7(a), Lemma 4 shows that Cells

(c)

(a)-(c) Three tandem networks which realize the same function.

2 and 3 can be removed, regardless of their function. (They
were removed originally by inspection. Each connected to
input b of a cell whose output was independent of b.) Cells 5
and 7 can also be removed. In the general case of such Type 3
cells, removal may require an inverter to be combined with
an adjacent cell if the network function is to remain the
same. Lemma 4 does not apply to Type 1 cells such as Cell 4
in Fig. 7(a).

Condition 2: In a canonical tandem network, if input x;
connects to a Type 2 cell (with inputs a and x;) which realizes
ax} or a + x¥, it does not connect to a Type 1 cell whose
other input is driven by a variable which precedes x;.

J
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Theorem 3 below shows that the masking relation can be
used to extract a string of Type 2 AND or OR gates whose
primary inputs satisfy Condition 2.

Theorem 3: f(X) has the decomposition
[(X)=g(X — Zxhxk - XD

(=g(X —Z)+xh +xh+ - +xh) (38)
for x;; € Z,, where g is tandem realizable if and only if

1) f(X) is tandem realizable,

2) X is a masked set with dominating set Z,, and

3) £(X) = 0(1) for all instances of masking.

Proof: (if) Expand f (X) in the Shannon canonical form
abOul x,-l, xi27 T, and xl'm

f(X)zf(Xill 1—+x“xl_2

Xim)

C X Xig o X (X110
= Xiy Xig 7 Xy Xy Xig T K 7
A0 0 X%z X

C X Xip 0 X (39)

Assume without loss of generality that all elements in Z,
0-mask X (the case where some inputs 1-mask while others
0-mask follows in like manner).

If f/(X)=0(1) in all instances of masking, then (39)
reduces to

y f(X)=f(X|ll o X X T Xi)

T X X2 T xim(f(X| o L= XX Xim)

+ X+ Kip o Kig) (40)
Since f(X) is tandem realizable, it is realized by a canonical
tandem network whose decomposition follows directly from
(40). Thus,

f(X|11 SR e e "'Xim)

is tandem realizable.
(only if) The three conditions of the hypothesis [ollow
directly from (38). Q.ED.
It follows that one step in the synthesis algorithm is to test
for a set Z, of inputs which mask all of X. If f(X) = Oor lin
all instances of masking, then a string of AND or OR gates,
respectively, can be extracted. The residue function
g(X — Z,) must then be tested for tandem realizability.

Cascades of AND or OR Gates Whose Inputs
Come From Type 1 Gates

Although Theorem 3 shows how to extract a string of
Type 2 AND or OR gates from the cascade of a tandem net, it
does not apply to a string of Type 3 gates. For example, in
Fig. 7(c), the output gate composes a Type 3 gate string of
length one. As a result, x, and xs do not mask all of the
remaining inputs. However, when x,x; =00 or 11, the
output is independent of all variables. This leads to
the following definition.

x; x; masks x, under f(X), if there exists at least one
assignment of values to x; and x ;such that f (X) is indepen-
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dent of x,. x;x; masks Y < X if there exists assignments of
values to x; and x ;such that x; x ; masks xforallx, e Y. As
an example, for the function realized by the networks of Fig.
7,x4xsmask {X |, X,,X3,X4,Xs}. Note that if x;masks Y, then
x; x;mask Y, where x; is another variablein X. Therefore, in
the discussion to follow, it will be assumed that if x; x jmask Y
neither x; nor x; alone mask Y.

Because it facilitates the synthesis algorithm it will be
assumed that:

Condition 3: Any inverter in the lead between the input of
a gate in the cascade of a canonical tandem network and the
output of a Type 1 gate g is part of g. Furthermore, if g is an
AND Or OR gate the inverter is “absorbed” using de Morgan’s
theorem.

A further restriction on the form of the canonical network
is obtained by the following observation. Fig. 8(a) shows
part of tandem network N in which a Type 1 AND gate g,
connects to an AND gate g, which is part of the cascade of N.
Together, g, and g, realize a three input AND function. Fig.
8(b) shows a rearrangement of the AND gates which does not
change the network function. Condition 2 applies, and so g3
can be eliminated resulting in the network of Fig. 8(c). In
general,

Lemma 5: Consider a Type 3 AND(OR) gate g in a cascade
of a tandem network. Then g need not connect to a Type 1
AND(OR) gate unless that gate connects to primary inputs of
lowest precedence.

Lemma 5 eliminates the consideration of certain struc-
tures and allows:

Condition 4: No Type 3 AND(OR) gate in a canonical
tandem network connects to the output of a Type 1 AND(OR)
gate g', except perhaps when g' connects to two inputs of
lowest precedence.

Although Lemma 5 eliminates from consideration certain
configurations, there remains the problem of identifying a
cascade of AND or Or gates driven by Type 1 gates only.
Theorem 4 addresses this problem.

Theorem 4 : Consider a canonical tandem network whose
output is derived from a cascade of Type 3 ANDora cascade
of Type 3 OR gates, which receives inputs from Type 1 gates
only. Let Y be the set of inputs to these Type 1 gatesand f (X)
the network function realized. Then, all x; € Y are involved
in a pair x; x; which masks X, forsomex;e Y. Furthermore,
all instances of masking yield f(X)= 0 (AND) or f (X) = 1
(or).

Proof: Consider x; € Y. x; connects to at least one Type
1 gate g whose other input is x;. If g connects to an AND gate
then all values of x; and x; which map to 0 cause f(X)=0.
Thus, x; and x; mask X. The case for or gates is identical
except f(X)=1. Q.ED.

The synthesis algorithm for this case can be seen as
follows. Fig. 9(a) shows a tandem network which realizes a
function f(X) in which X is masked by a number of pairs.
Fig. 9(b) shows a graph in which vertices are labeled by
variables in X, and where an edge connects x; and x;if x; x;
masks X. For example, an edge appears between x¢ and X,
because these are applied to OR gate g which in turn drives
an AND gate in the cascade. An edge also appears between x,
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(©
(a)-(c) Eliminating a Type | AND gate.

Fig. 8.

and x ,, for example, because when x, x,, = 10, no choice
of x¢ will cause both g5 and g4 to produce a 1. Thus,
f(X) =0 when x,x,, =10, and so x, x,, mask X.

With respect to the set of inputs Y = X — {x, x,;} which
are applied to Type 1 gates whose outputs are applied to the
cascade of AND gates, edges in Fig. 9(b) indicate possible
pairs of inputs which are applied to the same gate. It is
necessary, therefore, to determine which pairs correspond to
a gate such as x4 x,, and which do not, such as X4 X2

The problem of determining which inputs are applied to
exclusive OR gates and their complement, coincident prod-
uct gates, can be handled by considering symmetry among
variables. For example, in Fig. 9(a), x,, x,, and x, are
symmetric. In particular, the output gis O for all assi gnments
of values to x; x,x, except 000 and 111, since for such
assignments at least one of the outputs of gy and g, is 0. Since
q is “sensitized” to the output of g, only when all of x, x, X4
are 0 orall are 1, it makes no difference which of x 15X 2, 0T X 4,
the input to g, connects. Similarly, the function realized is
unchanged if the connection to g5 is moved from x, to X, or
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x,. If the network is to be a tandem network, however, the
inputs to g, and g cannot be applied to the same gate. Any
permutation of the labels x,, x,, and x, within themselves
leaves the network function unchanged.

Note also that if x, is replaced by %, the four inputs, x ,,
X3, X4, and X¢, are symmetric. In general, a set of variables
will be symmetric, to within a complementation of a
variable, if they are applied to a set of adjacent exclusive or
and coincident product gates which share inputs with
neighboring gates. Tests for symmetry among variables are
quite straightforward. For example, the test can proceed
algebraically or in an easily applied tabular method [15].

Thus, a step in the synthesis algorithm is to test for
symmetry of variables in a prospective function f(X). In
particular, only variables which are part of the same sub-
graph need be tested. For example, in Fig. 9(b), x, and x,
need not be considered since they can never be applied to the
same gate in a tandem network. Let Y, be a set of variables
such that x;, x, € Y if x, is symmetric to x, or x,. Then, Y is
divided into two disjoint subsets of symmetric variables Y;,
and Y, such thatforany x; € Y,,and x; e Y,, x jis symmetric
to x,. Transform the given function f(X) into a function
S'(X) in which each occurrence of x; such that x; e Y, is
complemented. Note that the new function is tandem realiz-
able if and only if the original is. In the example of Fig. 9(a),
this operation amounts to placing an inverter at x 4or x ,, x5,
and x, (depending on how Y, is chosen).

Formally,

Theorem 5: For some f(X, Y), let

g(X, x)=f(X, Y|x; > x;¥x; e Y), (41)
where x; € Y. Then f(X, Y) has the decomposition
J(X, Y) = g(X, x)S5.(Y)(G(X, x) + S5.a(Y)),°
if and only if
f(X,Y)=9g(X,0) ifx;=0Vx,eY
fIX,Y)=g(X,1) ifx;=1Vx;eYor (42)

S(X, Y)=0(1)

Proof: (For the first case only. The other follows in like

manner.) (iff) Express f(X) in its Shannon canonical form:
JX, Y) =%, %, XimG(X, 1),

(43)

for x;; € Y. Without loss of generality assume x, = X;y. ORINgG

the right side of (43) with x;, %;, *** £;,,g(X, 1)x;,(= 0)and

Xi1 Xiz = Ximg(X, 0)%;1(= 0), collecting terms and rearrang-
ing yields

f(Xi Y) = g(X’ xil) '(')l.m(Y) = g(Xs xi)S’(;l.m(Y)'
(only iff) Equation (42) follows directly from (43).
Q.E.D. -
The application of Theorem 5 to tandem networks is

otherwise.

" Ximd(X, 0) + Xy Xz e

based on the fact that S§,(Y)(S73,(Y)) is realized by a

% $7 .(Y), where m = | Y|, the symmetric function on variable set Y,is 1
if and only if no variablesin Y are 1 (0 subscripts) or if all m variables are 1
(1 subscript).

9
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Fig. 9. (a)and (b) Example of a tandem network with a cascade of AND
gates whose inputs are the outputs of Type 1 gates.

cascade of AND(OR) gates whose inputs come from coinci-
dent product (exclusive OR) gates.
Lemma 6: Let f(X, Y) have the decomposition
S(X, Y) = g(X. x)SEA(Y)g(X, x;) + Se.a(Y)) (44)

where g(X, x;)is given as (41)and m = | Y|. Thenf (X, Y)is
tandem realizable if and only if g(X, x;) is realized by a

canonical tandem net in which x; is or can be applied to a
Type 1 gate whose output is applied to a cascade of AND(OR)
gates which produces the network output.

Theorem 5 and Lemma 6 form the basis for a test of
exclusive OR or coincident product gates. When such gates
are removed, only AND or OR gates remain. For example, if
this is done to the function realized by the net of Fig. 9(a), the
network of Fig. 10(a) is obtained. Here, x,, x,, x4, and X
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*13

x
17

Fig. 10.

*11

Xg/.

(a)-(c) Network of Fig. 9 with exclusive OrR and coincident

product gates removed.

have been replaced by x,. The inverter on the input of g is
the result of complementing x.

It is necessary now to determine which edges in the pair
masking graph correspond to Type 1 AND or OR gates. This
problem can be handled by finding variables which are
masked by one other variable. Fig. 10(c)shows this relation-

- ship for the lunction realized by the network of Fig, 10(a).
Thatis, if x; masks x;, a directed arc connects x;to x ;. Notice
that inputs which are applied to only one gate g are masked
by exactly one other input (the other input to g). In general,

Lemma 7. Let f(X) be a function with the following
properties.

a) x;x; masks X and in all instances of masking
f(X)=0(1).

b) x; masks x;.
Then,

S(X)=g(X — x)h(x;, x;)g(X — x;) + h(x;, x;)),

where f(X) is tandem realizableifand only ifg(x — x)is, for
h(xi, x;) = x¥ + x¥(x}x¥).

Lemma 7 shows that for a prospective function, an or or
AND gate can be extracted leaving a function of one fewer
variable which is tandem realizable if and only if the original
one is. The function h(x;, x;)is determined by the values of x;
and x; which mask f(X). For example, in the function
realized by the net of Fig. 10(a), f(X) = 0 when x5 and x,
(two inputs which satisfy the criteria of Lemma 7) are 1 and
0, respectively. Thus, h(xg, xo) = %g + X,.

Applying Lemma 7 repeatedly will remove all Type 1 or
gates of Fig. 10(a). At the end of this stage of the synthesis
algorithm, it is necessary to specify that the input, x ,, of the
network left to be synthesized is to be preceded by all others.
If such a requirement is imposed on this section of the
tandem net by the extraction of a previous cascade, it is
necessary to verify that the input under consideration can
indeed be preceded by all others. For example, if xg of Fig.
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10(a) must be preceded by all other inputs, one must
conclude the function is not realizable since there is no way
to place x g at the bottom without affecting the “tandemness”
of the network. Of the inputs, only x 5, X 9, X 0,and x (; can be
precedee by all others.

Cascades of Exclusive OR Gates

In this section, tandem networks whose output is a
cascade of exclusive OR gates are considered. A result similar
to Lemma 5 for AND(OR ) cascades is also true of exclusive OR
gates.

Lemma 8: If x; and x; are applied to a Type 1 gate whose
output is applied in turn to a Type 3 exclusive OR gate ina
cascade of such gates, then x; and x; need not connect to a
Type 2 exclusive OR gate in the cascade.

Proof: Fig. 11(a) shows two exclusive OR gates in
cascade which connect to x; and a gate g, also driven by x,.
The rearrangement of exclusive OR gates shown in Fig. 11(b)
does not alter the realized function. The combination of g,
and the exclusive OR gate realizes a two-input function which
can be realized by a generally different gate g'; as shown in
Fig. 11(c). Q.ED.

Thus,

Condition 5: In a canonical tandem network if a Type 3
exclusive OR gate connects to the output of a gate whose
inputs are x; and x;, no adjacent exclusive OR gate connects
to either x; or x;.

Condition 5, like its counterpart for AND and OR gates,
Condition 4, eliminates the need in the synthesis algorithm
to consider certain configurations. Lemma 9 below also
results in a simplification.

Lemma 9: Consider a Type 3 exclusive OR gate g in a
cascade of exclusive Or gates. Then g need not connect to a
Type 1 exclusive OR or OR gate, unless that gate connects to
network inputs of least precedence.

Proof: The proof for the Type 1 exclusive OR gate is
similar to that for Lemma 8. The proof for Type 1 ORr gate
follows from the fact thatifan input to an exclusive OR gate is
complemented the function realized is the same as that
obtained by complementing any other input. In particular,
place an inverter on the output of each Type 1 OR which
inputs the cascade. Apply de Morgan’s theorem, changing
these into AND gates. For each inverter so placed, insert an
inverter in the input of the first exclusive OrR gate (which
receives from inputs of least precedence). If necessary usede
Morgan’s theorem to eliminate an inverter. If a Type 1 gate
is there it may become an OR gate. Q.E.D.

Condition 6: A Type 3 exclusive OR gate in the cascade of a
canonical tandem network does not connect to the output of
a Type 1 exclusive OR or OR gate, except when the latter

_connects to two inputs of lowest precedence.

When the output of a tandem network is produced by a
cascade of exclusive OR gates, masking of all variables does
not occur (except pair masking occurs in a trivial case where
a single exclusive OR gate composes the cascade). Thus, there
is the problem of identifying variables which are associated
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(c)

(a)-(c) A partial tandem network.

Fig. 11.

with the cascade and those which are not. Since a cascade of
exclusive OR gates must be preceded by a (possibly empty)
cascade of AND or OR gates, certain variables will be masked
by a single variable or a pair. However, within variables
applied to the exclusive OR cascade certain of these will be
masked. For example, Fig. 12(a) shows a network in which
three variables, x,, x¢, and x, are masked by one, x. Itis
important to note, however, that this is an extreme case; in
general, of the inputs associated with a cascade of exclusive
OR gates, at most three can be masked by asingle variable (or
by a pair of variables). Thus, if four or more variables X are
masked by a single variable or by a pair, these need not be
considered. Under this criterion none of the inputs in Fig.
12(a), for example, can be disregarded.

Of the variables under consideration, any x; applied to
exactly one Type 1 gate g must be masked by the other input
to g. Thus, Fig. 12(b) indicates x,, X7, X4, Xg, X3, and X ;0 aS
prospective inputs. It is then necessary to determine which
inputs indeed drive Type 1 gates whose outputs are applied
to an exclusive OR gate in the cascade. As a step in this
direction, consider

Lemma 10: f(X) has the decomposition

(X)) = g(X — x;)® xix;,
where g(X —xj|a—»x,»)=f(X|a—>x,-,0—>xj)ifandonlyif

(45)
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x; is a-masked by x; and
f(X[a—x;, 0> x0)=f(X|a— x,, 1-x)),

where a € {0, 1} and x? = x; and x! = x,.
Proof: (if) It follows from (46) that

fX[a-x)=f(X]|a-x, 0 x))x,
+f(X|a—>x,-,0—>xj)xj

f(X|a—>x,-)=f(X‘a—->x,-,0—>xj)®xj. (47)

Since x; is a-masked by x;,
f(X[a—»x,»)——-f(XIa—»xi, 0- x))

=f(X]|a—x;, 1-x,) (48)

Expressing f(X) in the Shannon canonical form about x,
and substituting (47) and (48) yields

fX)=[f(X]|a—-x;,0-x})
D xIxf + [(f(X|a—x, 0 x))]x? (49)

which is (45) for (X [a— x;, 0 - x;) = g(X — x;|a— x;).

(only if) Since g(X — x;) is independent of x;, it follows
that x; a-masks x ;. Furthermore, (46) follows directly from
(45). QE.D.

If a function f(X), where | X'| > 3 has no single variable
or a pair which mask X, then the output of a tandem net
which realizes f (X), if indeed any exist, cannot come from a
cascade of AND or OR gates. Thus, if / (X) has the decomposi-
tion of (45) and is tandem realizable so also is g(X — Xj).
Furthermore, if g(X — x ) is tandem realizable and x; is an
appropriately chosen input,f (X )is tandem realizable. Thus,

Theorem6: Let f(X ) be a function in which nosingle input
or pair masks X for |X| >3 and let it have the
decomposition

f(X)=g(X — x;) ® x;,.
Then f(X) is tandem realizable if and only if g(X —x))is
realized by a canonical tandem network where x jisorcanbe
input to a single Type 1 AND gate g which drives a cascade of
exclusive OR gates whose output is the network output.
The case where a single network input is applied to the
input of an exclusive OR gate in the cascade is quite

straightforward. In particular,
Lemma 11: f(X) has the decomposition

S(X) = g(X - x)@®x,
if and only if
f(X]0—>x,~)=f_(X|1—>x,-)

and we have, :
Theorem 7: Let f(X) have the decomposition

fX)=9(X — x,)® x,.

Then, f(X) is tandem realizable if and only ifg(X — x;)is.
The extraction of a cascade of exclusive OrR gates may
require that a specific input of the preceding cascade be
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Fig. 12, (a)-(c) Example of a cascade of exclusive or gates.

preceded by all other inputs to that cascade. If such a
requirement has been imposed on the present cascade, it is
then necessary to determine if the specific input can indeed
be preceded by all others. In general, any primary input to an
exclusive OR gate can be preceded by all others. Also
acceptable is any end variable of a set of variables applied to
Type 1 gates, as long as the other end variable is not required
to be the associated with the preceding cascade. The single
exception to the latter statement occurs when there is a
single string ol Type 1 gates. For example, in Fig. 12(a),
inputs, x,, xg, Xs, Xg, X3, and x,, can be preceded by any
other input.

Summary of Synthesis Algorithm

The synthesis algorithm can be summarized as follows:
Given a function f to be tested.

1) Set g = f.

2) If g is trivial, f is tandem realizable, and the algorithm
halts successfully.

3) If masking of the entire variable set exists, extract a
cascade of AND or OR gates, and go to 5). Otherwise, goto4).

4) Determine if a cascade of exclusive or gates can be
extracted, do this, and go to 5). Otherwise, g0 to 6).

5) If a variable specified in a previous step cannot be
preceded by all other variables, go to 6). Otherwise, set ¢
equal to the residue function and go to 2).

6) Hait. fis not tandem realizable.

J
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VI. SuMMARY AND CONCLUSIONS

This paper has focused on the tandem network, a network
of universal cells whose function set includes all functions
realized by the irredundant cascade. In particular, the
relationship between functions realized by three cell-
network interconnections and functions realized by the
subnetwork was shown. This analysis leads naturally to a
characterization of functions realized by the tandem net and
to a counting technique for the number of functions realized.
This number is significantly larger than for irredundant
cascades. Finally, a synthesis technique was shown for
assigning functions to cells in a tandem network such that a
given function is realized.

A very interesting topic is the application of the partition
matrix operation to more general interconnections than the
ones considered here. For example, the problem of similar
cell-network interconnections involving three and more
input universal cells seems tractable. A problem of some-
what greater difficulty is the characterization of functions
realized by interconnections of general networks with
common input leads in terms of the functions realized by the
individual networks. It appears that more advanced
techniques are required to handle the proliferation of opera-
tions which result.
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