The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005618 a(n) = 6*a(n-1) - 8. (Formerly M3528) 4
 4, 16, 88, 520, 3112, 18664, 111976, 671848, 4031080, 24186472, 145118824, 870712936, 5224277608, 31345665640, 188073993832, 1128443962984, 6770663777896, 40623982667368, 243743896004200, 1462463376025192 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS J. T. Butler, Tandem networks of universal cells, IEEE Trans. Computers, C-27 (1978), 785-799. (Annotated scanned copy) K. K. Maitra, Cascaded switching networks of two-input flexible cells, IEEE Trans. Electron. Computers, C-11 (1962), 136-143. Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 Index entries for linear recurrences with constant coefficients, signature (7,-6). FORMULA a(n) = (4/5)*(2 + 3*6^n), with n >= 0. - Paolo P. Lava, Jun 25 2008 G.f.: ( 4-12*x ) / ( (6*x-1)*(x-1) ). - Simon Plouffe in his 1992 dissertation For n > 0, a(n) = N(n,2,2) where N(n,s,r) is defined in A005608. - Sean A. Irvine, Jul 13 2016 MATHEMATICA NestList[6#-8&, 4, 20] (* Harvey P. Dale, Mar 29 2018 *) CROSSREFS Cf. A005608, A005609. Sequence in context: A165964 A300279 A321238 * A005495 A052124 A235166 Adjacent sequences:  A005615 A005616 A005617 * A005619 A005620 A005621 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Jon E. Schoenfield, Mar 27 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 8 15:35 EDT 2022. Contains 356009 sequences. (Running on oeis4.)