login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005530 Number of Boolean functions of n variables from Post class F(8,inf); number of degenerate Boolean functions of n variables.
(Formerly M1711)
2
2, 6, 38, 942, 325262, 25768825638, 129127208425774833206, 2722258935367507707190488025630791841374 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

I. Tomescu, Introducere in Combinatorica. Editura Tehnica, Bucharest, 1972, p. 129.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..12

T. E. Allen, J. Goldsmith, N. Mattei, Counting, Ranking, and Randomly Generating CP-nets, 2014.

R. K. Guy, Letter to N. J. A. Sloane, Mar 1974

Y. Raekow and K. Ziegler, A taxonomy of non-cooperatively computable functions, Presented at WEWoRC 2011 (link to conference record).

I. Tomescu, Excerpts from "Introducese in Combinatorica" (1972), pp. 230-1, 44-5, 128-9. (Annotated scanned copy)

Index entries for sequences related to Boolean functions

FORMULA

a(n) = Sum_{j=1..n} (-1)^(j+1)*binomial(n,j)*2^(2^(n-j)).

MATHEMATICA

Sum[(-1)^(j + 1) Binomial[n, j] 2^2^(n - j), {j, 1, n}]

PROG

(PARI) for(n=1, 10, print1(sum(j=1, n, (-1)^(j+1)*binomial(n, j)*2^(2^(n-j))), ", ")) \\ G. C. Greubel, Oct 06 2017

CROSSREFS

a(n) = 2^(2^n) - A000371(n). Cf. A036239, A036240.

Sequence in context: A005740 A006536 A057297 * A072191 A118324 A060421

Adjacent sequences:  A005527 A005528 A005529 * A005531 A005532 A005533

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane, R. K. Guy

EXTENSIONS

More terms from Vladeta Jovovic, Goran Kilibarda

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 21 21:14 EDT 2019. Contains 325199 sequences. (Running on oeis4.)