login
a(n) = (3*n+4)*(n+3)!/24.
(Formerly M4433)
9

%I M4433 #44 Nov 22 2022 22:18:26

%S 1,7,50,390,3360,31920,332640,3780000,46569600,618710400,8821612800,

%T 134399865600,2179457280000,37486665216000,681734237184000,

%U 13071512982528000,263564384219136000,5575400435404800000,123469776914964480000,2856835183101419520000

%N a(n) = (3*n+4)*(n+3)!/24.

%C Essentially Stirling numbers of second kind - third external diagonal of Worpitzky triangle A028246.

%D R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.

%D R. K. Guy, personal communication.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A005460/b005460.txt">Table of n, a(n) for n = 0..300</a>

%H R. Austin, R. K. Guy, and R. Nowakowski, <a href="/A000629/a000629.pdf">Unpublished notes, 1987</a>

%H Milan Janjic, <a href="http://www.pmfbl.org/janjic/">Enumerative Formulas for Some Functions on Finite Sets</a>

%H Rajesh Kumar Mohapatra and Tzung-Pei Hong, <a href="https://doi.org/10.3390/math10071161">On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences</a>, Mathematics (2022) Vol. 10, No. 7, 1161.

%H John K. Sikora, <a href="https://arxiv.org/abs/1806.00887">On Calculating the Coefficients of a Polynomial Generated Sequence Using the Worpitzky Number Triangles</a>, arXiv:1806.00887 [math.NT], 2018.

%F E.g.f.: (1+2*x)/(1-x)^5.

%F a(n) = S2(n+3, n+1)*n! = n!*A001296(n+1). - _Olivier GĂ©rard_, Sep 13 2016

%t Table[StirlingS2[n+3, n+1]*n!, {n,0,20}]

%o (Magma) [(3*n+4)*Factorial(n+3)/24: n in [0..20]]; // _Vincenzo Librandi_, Oct 08 2011

%o (PARI) a(n)=(3*n+4)*(n+3)!/24 \\ _Charles R Greathouse IV_, Jun 30 2017

%o (SageMath) [factorial(n)*stirling_number2(n+3,n+1) for n in range(21)] # _G. C. Greubel_, Nov 22 2022

%Y Cf. A028246.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_