login
a(n) = largest integer m such that every n-point interval order contains an m-point semiorder.
(Formerly M0435)
1

%I M0435 #25 Jul 01 2017 02:18:14

%S 1,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9,10

%N a(n) = largest integer m such that every n-point interval order contains an m-point semiorder.

%C Equivalently, a(n) is the largest integer m such that every n-point interval graph contains an m-point unit interval graph.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H P. C. Fishburn, <a href="/A005410/a005410.pdf">Letter to N. J. A. Sloane, Jul 1980</a>

%H Peter C. Fishburn, <a href="https://doi.org/10.1137/0602016">Maximum semiorders in interval orders</a>, SIAM J. Algebraic Discrete Methods 2 (1981), no. 2, 127-135.

%K nonn,more

%O 1,2

%A _N. J. A. Sloane_.

%E Better definition from _N. J. A. Sloane_, Mar 25 2014