

A005410


a(n) = largest integer m such that every npoint interval order contains an mpoint semiorder.
(Formerly M0435)


1



1, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Equivalently, a(n) is the largest integer m such that every npoint interval graph contains an mpoint unit interval graph.


REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Table of n, a(n) for n=1..18.
P. C. Fishburn, Letter to N. J. A. Sloane, Jul 1980
Peter C. Fishburn, Maximum semiorders in interval orders, SIAM J. Algebraic Discrete Methods 2 (1981), no. 2, 127135.


CROSSREFS

Sequence in context: A206916 A067086 A254531 * A120835 A091374 A266977
Adjacent sequences: A005407 A005408 A005409 * A005411 A005412 A005413


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane.


EXTENSIONS

Better definition from N. J. A. Sloane, Mar 25 2014


STATUS

approved



