This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005389 Number of Hamiltonian circuits on 2n times 4 rectangle. (Formerly M4228) 1
 1, 6, 37, 236, 1517, 9770, 62953, 405688, 2614457, 16849006, 108584525, 699780452, 4509783909, 29063617746, 187302518353, 1207084188912, 7779138543857, 50133202843990, 323086934794997, 2082156365731164, 13418602439355485, 86477122654688250, 557307869909156153 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..200 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992. Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992. T. G. Schmalz, G. E. Hite and D. J. Klein, Compact self-avoiding circuits on two-dimensional lattices, J. Phys. A 17 (1984), 445-453. FORMULA G.f.: x*(1-2*x-x^2)/(1-8*x+10*x^2+x^4). - Ralf Stephan, Apr 23 2004 MAPLE A005389:=-(-1+2*z+z**2)/(1-8*z+10*z**2+z**4); [Conjectured by Simon Plouffe in his 1992 dissertation.] a:= n -> (Matrix([[0, 1, 2, -11]]). Matrix(4, (i, j)-> if (i=j-1) then 1 elif j=1 then [8, -10, 0, -1][i] else 0 fi)^(n))[1, 1]: seq (a(n), n=1..25); # Alois P. Heinz, Aug 05 2008 MATHEMATICA a[1]=1; a[2]=6; a[3]=37; a[4]=236; a[n_] := a[n] = 8*a[n-1]-10*a[n-2]-a[n-4]; Array[a, 23] (* Jean-François Alcover, Mar 13 2014 *) CoefficientList[Series[(1 - 2 x - x^2)/(1 - 8 x + 10 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 15 2014 *) CROSSREFS Bisection of A006864. Sequence in context: A081188 A154623 A196834 * A080954 A271905 A073013 Adjacent sequences:  A005386 A005387 A005388 * A005390 A005391 A005392 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 16 04:34 EST 2019. Contains 320140 sequences. (Running on oeis4.)