Scan Reshi 5388

## ENUMERATING PARTITIONAL MATROIDS

538/

A. RECSKI

"He tried counting sheep which is sometimes a good way of getting to sleep..."

A. Milne: Winnie-the-Pooh

The concept of partitional matroids (the direct sum of uniform matroids) was first introduced by Berge [1]. Certain properties of partitional matroids were treated in [4], emphasizing also their connection with transversal matroids and their applicability in the analysis of electric networks. If a set  $\underline{S}$  has  $\underline{n}$  labelled elements and a partition of  $\underline{S}$  is considered then the number of different partitional matroids over this partition is at least  $\underline{n}$ -1 and at most  $\underline{2n}$ . The generating function for the number  $\underline{X}_{\underline{n}}$  of partitional matroids of  $\underline{S}$  is determined and the result  $\underline{n}^{-1}\log \underline{X}_{\underline{n}} = \log \underline{n} - \log\log \underline{n} - 1 + o(1)$  is obtained, which implies that the average number of partitional matroids over a partition is exp  $(o(\underline{n}))$ .

Let  $\underline{S}$  denote a finite set with  $\underline{n}$  labelled elements.  $\mathcal{Y} = \underline{S_1, S_2, \ldots, S_p}$  is called a partition of  $\underline{S}$  if  $\underline{U}_1 \, \underline{S}_1 = \underline{S}$  and if  $\underline{S}_1 \, \underline{N} \, \underline{S}_j \neq 0$  if and only if  $\underline{i} = \underline{j}$ .  $\mathcal{Y} = (\underline{a}_1, \underline{a}_2, \ldots, \underline{a}_p)$  is an ordered set of integers such that  $0 \leq \underline{a}_1 \leq |\underline{S}_1|$  ( $\underline{i} = 1, 2, \ldots, p$ ). The system  $[\mathcal{Y}, \mathcal{Y}]$  corresponds to a matroid on  $\underline{S}$ , namely a subset  $\underline{X} \subseteq \underline{S}$  is independent if and only if  $|\underline{X} \cap \underline{S}_i| \leq \underline{a}_i$  for  $\underline{i} = 1, 2, \ldots, p$ . The matroids of this type are called partitional matroids. In order to establish a one-one correspondence between the set of partitional matroids and the set of certain systems  $[\mathcal{Y}, \mathcal{A}]$ 

the convention of [4] is applied again:

All of the subsets  $\underline{S}_i$  with  $\underline{a}_i = 0$  or with  $\underline{a}_i = |\underline{S}_i|$  are supposed to contain a single element only.

If  $\underline{A}_n$  is a sequence of numbers then let the symbol  $\underline{A}_n\varepsilon\mathbb{A}$  abbreviate that

 $\underline{n}^{-1}\log \underline{A}_n = \log \underline{n} - \log\log \underline{n} - 1 + o(1).$ 

If  $\underline{G}_n$  denotes the number of partitions of the set  $\underline{S}$  with  $\underline{n}$  elements (the  $\underline{n}^{th}$  Bell-number) then  $\underline{G}_n \varepsilon \Lambda$ , see e.g. [2]. Our statement that  $\underline{X}_n \varepsilon \Lambda$  too, will directly be implied by the following theorem, since  $\sum_{n=0}^{\infty} \frac{G_n t^n}{n!} = \exp(e^t - 1)$  and  $\exp(e^t \cdot p(t)) = o(\exp(e^{(1+\varepsilon)t}))$  for any polynomial p(t) and for any  $\varepsilon > 0$ .

THEOREM:  $\sum_{i=0}^{\infty} \frac{X_n t^n}{n!} = \exp(e^t(t-1) + 2t + 1)$ , if, by definition,  $X_0 = 1$ .

Proof: Let  $\mathcal{F} = (\underline{S_1}, \underline{S_2}, \dots)$  be an arbitrary partition of  $\underline{S}$  and let  $\underline{t_i}$  denote the number of the  $\underline{i}$ -element subsets in  $\mathcal{F} = (\underline{s_1}, \underline{s_2}, \dots)$ . The number of partitional matroids over  $\underline{f} = (\underline{s_1}, \underline{s_2}, \dots)$  is obviously  $\underline{f} = 1 + 1$  where  $\underline{f} = 1 + 1$  if  $\underline{f} > 1$  (cf. the above convention). The number of partitions of the labelled set, belonging to a certain system  $\underline{T} = (\underline{t_1}, \underline{t_2}, \dots)$  is obviously

$$\frac{n!}{n} \quad \text{where } \Sigma i t_i = n. \text{ Thus, there are } i = 1 \quad t_i ! (i!)$$

partitional matroids over all the partitions belonging to  $\underline{T}$ .

Hence

$$\frac{X_nt^n}{n!} = \sum_{i=1}^n \frac{\left(\frac{x_it^i}{i!}\right)}{t_i!}$$

where the summation is over all systems of integers  $\underline{t}_i$  with n  $\Sigma$  i.t<sub>i</sub>=n. Finally  $\underline{t}_i$   $\underline{t}_i$ 

which leads to the assertion since  $\varphi_1(t) = e^{2t}$  and  $\prod_{i=2}^{\infty} \varphi_i(t) = \exp(\sum_{i=2}^{\infty} \frac{t^i}{(i-1)!} - \sum_{i=2}^{\infty} \frac{t^i}{i!}) = \exp((t-1)e^t + 1).$ 

REMARKS: 1. Putting  $\psi_1 = \psi_2 = \dots = 1$  the right hand side of (1) leads to the number  $\underline{G}_n$  of the partitions of  $\underline{S}$  (see Rényi [5]).

(see [4]) is considered, i.e.  $\mathcal{M}_1 \subseteq \mathcal{M}_2$  if any independent subset of the matroid  $\mathcal{M}_1$  is independent in  $\mathcal{M}_2$  too. Let  $\underline{Y}_n$  denote the size of the longest antichain (i.e. the maximal number of pairwise incomparable elements) with respect to this partial ordering of the partitional matroids of  $\underline{S}$ . We prove that  $\underline{Y}_n \in \Lambda$ . The upper bound is trivial, since  $\underline{Y}_n < \underline{X}_n$ . The lower estimation  $\underline{n}^{-2}\underline{G}_n < \underline{Y}_n$  will directly be implied by the pigeonhole-principle. Let  $\underline{S}(\underline{n},\underline{k})$  denote the Stirling numbers of the second kind (the number of partitions of  $\underline{n}$  labelled elements into  $\underline{k}$  subsets). The relation  $\underline{max} \ \underline{S}(\underline{n},\underline{k}) \in \Lambda$  is wellknown, see e.g. [3], and the  $\underline{l} \le \underline{k} \le \underline{n}$ 

matroids of the same rank, proved in [4], leads to the assertion.

I wish to acknowledge some very helpful correspondence with G. Szekeres and V. V. Menon.

RESEARCH INSTITUTE FOR TELECOMMUNICATION 1026 BUDAPEST, GÁBOR Á. U. 65-67

## References

/1/ C.Berge: Graphes et hypergraphes, Dunod, Paris, 1970.

/2/ F. Binet - G. Szekeres: On Borel fields over finite sets,

Ann. Math. Stat., Vol. 28. /1957/ pp. 494-498.

/3/ V. V. Menon: On the maximum of the Stirling numbers of

the second kind, J. Comb. Th. /A/ Vol. 15, No. 1. pp. 11-24.

/4/ A. Recski: On partitional matroids with applications, to

appear in the Proceedings of the Keszthely Colloquium, 1973.

/5/ A. Rényi: Új módszerek és eredmények a kombinatorikus

analizisben, MTA. III. oszt. közl. Vol. 16/1966/ pp. 77-105.