login
a(n) = L(L(n+1)+1), where L(n) are Lucas numbers A000032.
(Formerly M2628)
2

%I M2628 #28 Nov 15 2022 02:41:42

%S 3,7,11,47,322,9349,1860498,10749957122,12360848946698171,

%T 82123488809519507169850807,

%U 627376215338105766356982006981782561278127,31842547163971605907183271059340725709462269514762215168643703957079

%N a(n) = L(L(n+1)+1), where L(n) are Lucas numbers A000032.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A005372/b005372.txt">Table of n, a(n) for n = 0..16</a>

%p L:= n-> (<<0|1>, <1|1>>^(n). <<2,1>>)[1,1]:

%p a:= n-> L(L(n+1)+1):

%p seq(a(n), n=0..12); # _Alois P. Heinz_, Jun 01 2016

%t LucasL[1 +LucasL[Range[16]]] (* _G. C. Greubel_, Nov 14 2022 *)

%o (Magma) [Lucas(1+Lucas(n+1)): n in [0..15]]; // _G. C. Greubel_, Nov 14 2022

%o (SageMath) [lucas_number2(1+lucas_number2(n+1, 1,-1),1,-1) for n in range(15)] # _G. C. Greubel_, Nov 14 2022

%Y Cf. A000032, A005371.

%K nonn

%O 0,1

%A _N. J. A. Sloane_

%E a(8) onwards corrected by _Sean A. Irvine_, Jun 01 2016

%E Name edited by _Alois P. Heinz_, Jun 01 2016